Vis enkel innførsel

dc.contributor.authorDong, Nanqing
dc.contributor.authorKampffmeyer, Michael
dc.contributor.authorLiang, Xiaodan
dc.contributor.authorXu, Min
dc.contributor.authorVoiculescu, Irina
dc.contributor.authorXing, Eric
dc.date.accessioned2022-09-06T10:21:06Z
dc.date.available2022-09-06T10:21:06Z
dc.date.issued2021-11-20
dc.description.abstractThe data-driven nature of deep learning (DL) models for semantic segmentation requires a large number of pixel-level annotations. However, large-scale and fully labeled medical datasets are often unavailable for practical tasks. Recently, partially supervised methods have been proposed to utilize images with incomplete labels in the medical domain. To bridge the methodological gaps in partially supervised learning (PSL) under data scarcity, we propose Vicinal Labels Under Uncertainty (VLUU), a simple yet efficient framework utilizing the human structure similarity for partially supervised medical image segmentation. Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels. We systematically evaluate VLUU under the challenges of small-scale data, dataset shift, and class imbalance on two commonly used segmentation datasets for the tasks of chest organ segmentation and optic disc-and-cup segmentation. The experimental results show that VLUU can consistently outperform previous partially supervised models in these settings. Our research suggests a new research direction in label-efficient deep learning with partial supervision.en_US
dc.identifier.citationDong, Kampffmeyer, Liang, Xu, Voiculescu, Xing. Towards robust partially supervised multi-structure medical image segmentation on small-scale data. Applied Soft Computing. 2022;114en_US
dc.identifier.cristinIDFRIDAID 2022143
dc.identifier.doi10.1016/j.asoc.2021.108074
dc.identifier.issn1568-4946
dc.identifier.issn1872-9681
dc.identifier.urihttps://hdl.handle.net/10037/26655
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalApplied Soft Computing
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.titleTowards robust partially supervised multi-structure medical image segmentation on small-scale dataen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel