ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • Vis innførsel
  •   Hjem
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Secure and scalable deduplication of horizontally partitioned health data for privacy-preserving distributed statistical computation

Permanent lenke
https://hdl.handle.net/10037/26762
DOI
https://doi.org/10.1186/s12911-016-0389-x
Thumbnail
Åpne
article.pdf (1.761Mb)
Publisert versjon (PDF)
Dato
2017-01-03
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Yigzaw, Kassaye Yitbarek; Michalas, Antonis; Bellika, Johan Gustav
Sammendrag
Background: Techniques have been developed to compute statistics on distributed datasets without revealing private information except the statistical results. However, duplicate records in a distributed dataset may lead to incorrect statistical results. Therefore, to increase the accuracy of the statistical analysis of a distributed dataset, secure deduplication is an important preprocessing step.

Methods: We designed a secure protocol for the deduplication of horizontally partitioned datasets with deterministic record linkage algorithms. We provided a formal security analysis of the protocol in the presence of semi-honest adversaries. The protocol was implemented and deployed across three microbiology laboratories located in Norway, and we ran experiments on the datasets in which the number of records for each laboratory varied. Experiments were also performed on simulated microbiology datasets and data custodians connected through a local area network.

Results: The security analysis demonstrated that the protocol protects the privacy of individuals and data custodians under a semi-honest adversarial model. More precisely, the protocol remains secure with the collusion of up to N − 2 corrupt data custodians. The total runtime for the protocol scales linearly with the addition of data custodians and records. One million simulated records distributed across 20 data custodians were deduplicated within 45 s. The experimental results showed that the protocol is more efficient and scalable than previous protocols for the same problem.

Conclusions: The proposed deduplication protocol is efficient and scalable for practical uses while protecting the privacy of patients and data custodians.

Forlag
BMC
Sitering
Yigzaw KY, Michalas A, Bellika JG. Secure and scalable deduplication of horizontally partitioned health data for privacy-preserving distributed statistical computation. BMC Medical Informatics and Decision Making. 2017;17(1)
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (UB) [3252]
Copyright 2016 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring