Homogenization of a singular random one-dimensional PDE with time-varying coefficients
Permanent link
https://hdl.handle.net/10037/26867Date
2012-05-04Type
Journal articleTidsskriftartikkel
Peer reviewed
Abstract
In this paper we study the homogenization of a nonautonomous parabolic equation with a large random rapidly oscillating potential in the case of one-dimensional spatial variable. We show that if the potential is a statistically homogeneous rapidly oscillating function of both temporal and spatial variables, then, under proper mixing assumptions, the limit equation is deterministic, and convergence in probability holds. To the contrary, for the potential having a microstructure only in one of these variables, the limit problem is stochastic, and we only have convergence in law.
Publisher
Institute of Mathematical StatisticsCitation
Pardoux E, Piatnitski A. Homogenization of a singular random one-dimensional PDE with time-varying coefficients Annals of Probability. 2012;40(3):1316-1356Metadata
Show full item record
Copyright 2012 Institute of Mathematical Statistics