ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

RS-HeRR: a rough set-based Hebbian rule reduction neuro-fuzzy system

Permanent lenke
https://hdl.handle.net/10037/26897
DOI
https://doi.org/10.1007/s00521-020-04997-2
Thumbnail
Åpne
article.pdf (1.289Mb)
Publisert versjon (PDF)
Dato
2020-06-01
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Liu, Feng; Sekh, Arif Ahmed; Quek, Chai; Ng, Geok See; Prasad, Dilip K.
Sammendrag
Interpretabilty is one of the desired characteristics in various classification task. Rule-based system and fuzzy logic can be used for interpretation in classification. The main drawback of rule-based system is that it may contain large complex rules for classification and sometimes it becomes very difficult in interpretation. Rule reduction is also difficult for various reasons. Removing important rules may effect in classification accuracy. This paper proposes a hybrid fuzzy-rough set approach named RS-HeRR for the generation of effective, interpretable and compact rule set. It combines a powerful rule generation and reduction fuzzy system, called Hebbian-based rule reduction algorithm (HeRR) and a novel rough-set-based attribute selection algorithm for rule reduction. The proposed hybridization leverages upon rule reduction through reduction in partial dependency as well as improvement in system performance to significantly reduce the problem of redundancy in HeRR, even while providing similar or better accuracy. RS-HeRR demonstrates these characteristics repeatedly over four diverse practical classification problems, such as diabetes identification, urban water treatment monitoring, sonar target classification, and detection of ovarian cancer. It also demonstrates excellent performance for highly biased datasets. In addition, it competes very well with established non-fuzzy classifiers and outperforms state-ofthe-art methods that use rough sets for rule reduction in fuzzy systems.
Forlag
Springer
Sitering
Liu, F., Sekh, A.A., Quek, C. et al. RS-HeRR: a rough set-based Hebbian rule reduction neuro-fuzzy system. Neural Comput & Applic 33, 1123–1137 (2021)
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright 2020 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring