ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Remote sensing image regression for heterogeneous change detection

Permanent link
https://hdl.handle.net/10037/27238
DOI
https://doi.org/10.1109/MLSP.2018.8517033
Thumbnail
View/Open
article.pdf (2.721Mb)
Accepted manuscript version (PDF)
Date
2018-11-01
Type
Conference object
Konferansebidrag

Author
Luppino, Luigi Tommaso; Bianchi, Filippo Maria; Moser, Gabriele; Anfinsen, Stian Normann
Abstract
Change detection in heterogeneous multitemporal satellite images is an emerging topic in remote sensing. In this paper we propose a framework, based on image regression, to perform change detection in heterogeneous multitemporal satellite images, which has become a main topic in remote sensing. Our method learns a transformation to map the first image to the domain of the other image, and vice versa. Four regression methods are selected to carry out the transformation: Gaussian processes, support vector machines, random forests, and a recently proposed kernel regression method called homogeneous pixel transformation. To evaluate not only potentials and limitations of our framework, but also the pros and cons of each regression method, we perform experiments on two data sets. The results indicates that random forests achieve good performance, are fast and robust to hyperparameters, whereas the homogeneous pixel transformation method can achieve better accuracy at the cost of a higher complexity.
Description
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Publisher
IEEE
Citation
Luppino LT, Bianchi FM, Moser G, Anfinsen SN: Remote sensing image regression for heterogeneous change detection. In: IEEE SPS. 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), 2018. IEEE Signal Processing Society
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright © 2018 IEEE

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)