Vis enkel innførsel

dc.contributor.authorMartinsen, Ivar
dc.contributor.authorHarbitz, Alf
dc.contributor.authorBianchi, Filippo Maria
dc.date.accessioned2022-11-08T07:02:21Z
dc.date.available2022-11-08T07:02:21Z
dc.date.issued2022-11-04
dc.description.abstractOtoliths (ear-stones) in the inner ears of vertebrates containing visible year zones are used extensively to determine fish age. Analysis of otoliths is a time-consuming and difficult task that requires the education of human experts. Human age estimates are inconsistent, as several readings by the same human expert might result in different ages assigned to the same otolith, in addition to an inherent bias between readers. To improve efficiency and resolve inconsistent results in the age reading from otolith images by human experts, an automated procedure based on convolutional neural networks (CNNs), a class of deep learning models suitable for image processing, is investigated. We applied CNNs that perform image regression to estimate the age of Greenland halibut (Reinhardtius hippoglossoides) with good results for individual ages as well as the overall age distribution, with an average CV of about 10% relative to the read ages by experts. In addition, the density distribution of predicted ages resembles the density distribution of the ground truth. By using k*lfold cross-validation, we test all available samples, and we show that the results are rather sensitive to the choice of test set. Finally, we apply explanation techniques to analyze the decision process of deep learning models. In particular, we produce heatmaps indicating which input features that are the most important in the computation of predicted age.en_US
dc.identifier.citationMartinsen I, Harbitz, Bianchi. Age prediction by deep learning applied to Greenland halibut (Reinhardtius hippoglossoides) otolith images. PLOS ONE. 2022;17(11)en_US
dc.identifier.cristinIDFRIDAID 2069451
dc.identifier.doi10.1371/journal.pone.0277244
dc.identifier.issn1932-6203
dc.identifier.urihttps://hdl.handle.net/10037/27289
dc.language.isoengen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.journalPLOS ONE
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleAge prediction by deep learning applied to Greenland halibut (Reinhardtius hippoglossoides) otolith imagesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)