dc.contributor.author | Persson, Lars-Erik | |
dc.contributor.author | Schipp, F. | |
dc.contributor.author | Tephnadze, G. | |
dc.contributor.author | Weisz, F. | |
dc.date.accessioned | 2022-11-23T09:30:18Z | |
dc.date.available | 2022-11-23T09:30:18Z | |
dc.date.issued | 2022-05-13 | |
dc.description.abstract | In this paper we discuss and prove an analogy of the Carleson–Hunt theorem with respect to Vilenkin systems. In particular, we use the theory of martingales and give a new and shorter proof of the almost everywhere convergence of Vilenkin–Fourier series of f ∈ L <sub>p</sub>(G<sub>m</sub>)for p > 1 in case the Vilenkin system is bounded. Moreover, we also prove sharpness by stating an analogy of the Kolmogorov theorem for p = 1 and construct a function f ∈ L<sub>1</sub>(G<sub>m</sub>) such that the partial sums with respect to Vilenkin systems diverge everywhere. | en_US |
dc.identifier.citation | Persson, Schipp, Tephnadze, Weisz. An Analogy of the Carleson–Hunt Theorem with Respect to Vilenkin Systems. Journal of Fourier Analysis and Applications. 2022;28(3) | en_US |
dc.identifier.cristinID | FRIDAID 2054204 | |
dc.identifier.doi | 10.1007/s00041-022-09938-2 | |
dc.identifier.issn | 1069-5869 | |
dc.identifier.issn | 1531-5851 | |
dc.identifier.uri | https://hdl.handle.net/10037/27495 | |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.journal | Journal of Fourier Analysis and Applications | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2022 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.title | An Analogy of the Carleson–Hunt Theorem with Respect to Vilenkin Systems | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |