Vis enkel innførsel

dc.contributor.authorPersson, Lars-Erik
dc.contributor.authorSchipp, F.
dc.contributor.authorTephnadze, G.
dc.contributor.authorWeisz, F.
dc.date.accessioned2022-11-23T09:30:18Z
dc.date.available2022-11-23T09:30:18Z
dc.date.issued2022-05-13
dc.description.abstractIn this paper we discuss and prove an analogy of the Carleson–Hunt theorem with respect to Vilenkin systems. In particular, we use the theory of martingales and give a new and shorter proof of the almost everywhere convergence of Vilenkin–Fourier series of f ∈ L <sub>p</sub>(G<sub>m</sub>)for p > 1 in case the Vilenkin system is bounded. Moreover, we also prove sharpness by stating an analogy of the Kolmogorov theorem for p = 1 and construct a function f ∈ L<sub>1</sub>(G<sub>m</sub>) such that the partial sums with respect to Vilenkin systems diverge everywhere.en_US
dc.identifier.citationPersson, Schipp, Tephnadze, Weisz. An Analogy of the Carleson–Hunt Theorem with Respect to Vilenkin Systems. Journal of Fourier Analysis and Applications. 2022;28(3)en_US
dc.identifier.cristinIDFRIDAID 2054204
dc.identifier.doi10.1007/s00041-022-09938-2
dc.identifier.issn1069-5869
dc.identifier.issn1531-5851
dc.identifier.urihttps://hdl.handle.net/10037/27495
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.journalJournal of Fourier Analysis and Applications
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleAn Analogy of the Carleson–Hunt Theorem with Respect to Vilenkin Systemsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)