Vis enkel innførsel

dc.contributor.authorBianchi, Filippo Maria
dc.contributor.authorLivi, Lorenzo
dc.contributor.authorJenssen, Robert
dc.contributor.authorAlippi, Cesare
dc.date.accessioned2023-05-05T12:16:13Z
dc.date.available2023-05-05T12:16:13Z
dc.date.issued2017-07-03
dc.description.abstractThe computational capability of an Echo State Network (ESN), expressed in terms of low prediction error and high short-term memory capacity, is maximized on the so-called “edge of criticality”. In this paper we present a novel, unsupervised approach to identify this edge and, accordingly, we determine hyperparameters configuration that maximize network performance. The proposed method is application-independent and stems from recent theoretical results consolidating the link between Fisher information and critical phase transitions. We show how to identify optimal ESN hyperparameters by relying only on the Fisher information matrix (FIM) estimated from the activations of hidden neurons. In order to take into account the particular input signal driving the network dynamics, we adopt a recently proposed non-parametric FIM estimator. Experimental results on a set of standard benchmarks are provided and discussed, demonstrating the validity of the proposed method.en_US
dc.identifier.citationBianchi FM, Livi L, Jenssen R, Alippi C: Critical echo state network dynamics by means of Fisher information maximization. In: Choe. 2017 International Joint Conference on Neural Networks (IJCNN) , 2017. IEEE p. 852-858en_US
dc.identifier.cristinIDFRIDAID 1536885
dc.identifier.doi10.1109/IJCNN.2017.7965941
dc.identifier.isbn978-1-5090-6182-2
dc.identifier.issn2161-4407
dc.identifier.urihttps://hdl.handle.net/10037/29128
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.projectIDNorges forskningsråd: 239844en_US
dc.rights.accessRightsopenAccessen_US
dc.titleCritical echo state network dynamics by means of Fisher information maximizationen_US
dc.type.versionsubmittedVersionen_US
dc.typeChapteren_US
dc.typeBokkapittelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel