ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Critical echo state network dynamics by means of Fisher information maximization

Permanent lenke
https://hdl.handle.net/10037/29128
DOI
https://doi.org/10.1109/IJCNN.2017.7965941
Thumbnail
Åpne
article.pdf (1.762Mb)
Innsendt manusversjon (PDF)
Dato
2017-07-03
Type
Chapter
Bokkapittel
Forfatter
Bianchi, Filippo Maria; Livi, Lorenzo; Jenssen, Robert; Alippi, Cesare
Sammendrag
The computational capability of an Echo State Network (ESN), expressed in terms of low prediction error and high short-term memory capacity, is maximized on the so-called “edge of criticality”. In this paper we present a novel, unsupervised approach to identify this edge and, accordingly, we determine hyperparameters configuration that maximize network performance. The proposed method is application-independent and stems from recent theoretical results consolidating the link between Fisher information and critical phase transitions. We show how to identify optimal ESN hyperparameters by relying only on the Fisher information matrix (FIM) estimated from the activations of hidden neurons. In order to take into account the particular input signal driving the network dynamics, we adopt a recently proposed non-parametric FIM estimator. Experimental results on a set of standard benchmarks are provided and discussed, demonstrating the validity of the proposed method.
Forlag
IEEE
Sitering
Bianchi FM, Livi L, Jenssen R, Alippi C: Critical echo state network dynamics by means of Fisher information maximization. In: Choe. 2017 International Joint Conference on Neural Networks (IJCNN) , 2017. IEEE p. 852-858
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring