ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsupervised Band Selection for Hyperspectral Datasets by Double Graph Laplacian Diagonalization

Permanent link
https://hdl.handle.net/10037/31172
DOI
https://doi.org/10.1109/IGARSS47720.2021.9553127
Thumbnail
View/Open
article.pdf (3.605Mb)
Submitted manuscript version (PDF)
Date
2021
Type
Journal article
Tidsskriftartikkel

Author
Khachatrian, Eduard; Chlaily, Saloua; Eltoft, Torbjørn; Gamba, Paolo; Marinoni, Andrea
Abstract
The vast amount of spectral information provided by hyperspectral images can be useful for different applications. However, the presence of redundant bands will negatively affect application performance. Therefore, it is crucial to select a relevant subset that preserves the information of the original set. In this paper, we present an automatic and accurate band selection method based on Graph Laplacians. Unlike existing band selection methods, this method exploits two similarity measures simultaneously. Furthermore, it is performed on a superpixel level, so it allows us to preserve not only global but contemporaneously local particularities of original data. Experiments show the importance of measuring the relevance of the bands at local and global scales and the ability of the method to minimize intercorrelation among selected bands, hence improving the selection of the most informative spectral channels.
Publisher
IEEE
Citation
Khachatrian, Chlaily, Eltoft, Gamba, Marinoni. Unsupervised Band Selection for Hyperspectral Datasets by Double Graph Laplacian Diagonalization. IEEE International Geoscience and Remote Sensing Symposium proceedings. 2021:4007-4010
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)