Vis enkel innførsel

dc.contributor.authorStemland, Helene
dc.contributor.authorRuud, Bent Ole
dc.contributor.authorJohansen, Tor Arne
dc.date.accessioned2023-09-25T07:43:39Z
dc.date.available2023-09-25T07:43:39Z
dc.date.issued2023-08-07
dc.description.abstractGlaciers generate seismic waves due to calving and fracturing, meaning that recording and following event classification can be used to monitor glacier dynamics. Our aim with this study is to analyse seismic data acquired at the seabed and on land in front of Nordenskiöldbreen on Svalbard during 8 days in October 2020. The survey included 27 ocean bottom nodes, each equipped with 3 geophones and a hydrophone, and 101 land-based geophones. The resulting data contain numerous seismic P-, S- and Scholte wave events throughout the study period, as well as non-seismic gravity waves. The recording quality strongly depends on receiver type and location, especially for the latter wave types. Our results demonstrate that hydrophones at the seabed are advantageous to record gravity waves, and that Scholte waves are only recorded close to the glacier. The Scholte waves are used to estimate the near-surface S-wave profile of the seabed sediments, and the gravity wave amplitudes are converted to wave heights at the surface. We further discuss possible source mechanisms for the recorded events and present evidence that waves from earthquakes, calving and brittle fracturing of the glacier and icebergs are all represented in the data. The interpretation is based on frequency content, duration, seismic velocities and onset (emergent/impulsive) and is supported by source localization, which we show is challenging for this dataset. In conclusion, our study demonstrates the potential of using seismic observations for detecting glacier-related events and provides valuable knowledge about the importance of survey geometry, particularly the advantages of including seabed receivers in the vicinity of the glacier.en_US
dc.identifier.citationStemland, Ruud, Johansen. Case study of combined marine- and land-based passive seismic surveying in front of Nordenskiöldbreen outlet glacier, Adolfbukta, Svalbard. Near Surface Geophysics. 2023;21(5):376-391en_US
dc.identifier.cristinIDFRIDAID 2177697
dc.identifier.doi10.1002/nsg.12266
dc.identifier.issn1569-4445
dc.identifier.issn1873-0604
dc.identifier.urihttps://hdl.handle.net/10037/31180
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.journalNear Surface Geophysics
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0en_US
dc.rightsAttribution-NonCommercial 4.0 International (CC BY-NC 4.0)en_US
dc.titleCase study of combined marine- and land-based passive seismic surveying in front of Nordenskiöldbreen outlet glacier, Adolfbukta, Svalbarden_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)