ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for elektroteknologi
  • Artikler, rapporter og annet (elektroteknologi)
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for elektroteknologi
  • Artikler, rapporter og annet (elektroteknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Load modeling from smart meter data using neural network methods

Permanent link
https://hdl.handle.net/10037/31282
DOI
https://doi.org/10.1109/ICIT46573.2021.9453662
Thumbnail
View/Open
article.pdf (1.117Mb)
Accepted manuscript version (PDF)
Date
2021
Type
Chapter
Bokkapittel

Author
Kianpoor, Nasrin; Hoff, Bjarte; Østrem, Trond
Abstract
Electricity load modeling plays a critical role to conduct load forecasting or other applications such as non-intrusive load monitoring. For such a reason, this paper investigates a comparison study of two common artificial neural network methods (Multilayer perceptron (MLP) and radial basis function neural network (RBF-NN) for home load modeling application. The accuracy of load modeling using neural network methods highly depends on chosen variables as the input data set for the networks. For this purpose, data including weather, time, and consumer behavior are considered as the input dataset to train the networks. The results of this study show that the RBF-NN model has higher accuracy in training data. On the other side, the MLP model outperforms in test data. To sum up, the results prove that the load model obtained by MLP has a better performance in terms of mean square and root mean square error indices.
Publisher
IEEE
Citation
Kianpoor, Hoff, Østrem: Load modeling from smart meter data using neural network methods. In: Blasco-Gimenez, Antonino-Daviu. 22nd IEEE International Conference on Industrial Technology (ICIT) , 2021. IEEE conference proceedings
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (elektroteknologi) [127]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)