Show simple item record

dc.contributor.authorPiene, Ragni
dc.contributor.authorRiener, Cordian
dc.contributor.authorShapiro, Boris
dc.date.accessioned2023-11-06T11:27:44Z
dc.date.available2023-11-06T11:27:44Z
dc.date.issued2023
dc.description.abstractBelow we consider the evolutes of plane real-algebraic curves and discuss some of their complex and real-algebraic properties. In particular, for a given degree d ≥ 2, we provide lower bounds for the following four numerical invariants: 1) the maximal number of times a real line can intersect the evolute of a real-algebraic curve of degree d; 2) the maximal number of real cusps which can occur on the evolute of a real-algebraic curve of degree d; 3) the maximal number of (cru)nodes which can occur on the dual curve to the evolute of a real-algebraic curve of degree d; 4) the maximal number of (cru)nodes which can occur on the evolute of a real-algebraic curve of degree d.en_US
dc.descriptionSource at <a href=https://aif.centre-mersenne.org/>https://aif.centre-mersenne.org/</a>.en_US
dc.identifier.citationPiene R, Riener C, Shapiro. Return of the evolute. Annales de l'Institut Fourier. 2023en_US
dc.identifier.cristinIDFRIDAID 1956819
dc.identifier.issn0373-0956
dc.identifier.issn1777-5310
dc.identifier.urihttps://hdl.handle.net/10037/31675
dc.language.isoengen_US
dc.publisherAnnales de l’Institut Fourieren_US
dc.relation.journalAnnales de l'Institut Fourier
dc.relation.projectIDTromsø forskningsstiftelse: 17MATTECRen_US
dc.relation.urihttps://arxiv.org/pdf/2110.11691.pdf
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0en_US
dc.rightsAttribution 3.0 International (CC BY 3.0)en_US
dc.titleReturn of the evoluteen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 3.0 International (CC BY 3.0)
Except where otherwise noted, this item's license is described as Attribution 3.0 International (CC BY 3.0)