ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fishing Trawler Event Detection: An Important Step Towards Digitization of Sustainable Fishing

Permanent lenke
https://hdl.handle.net/10037/31676
DOI
https://doi.org/10.1109/ICAPAI58366.2023.10194202
Thumbnail
Åpne
article.pdf (19.68Mb)
Akseptert manusversjon (PDF)
Dato
2023-08-02
Type
Chapter
Bokkapittel

Forfatter
Nordmo, Tor-Arne Schmidt; Ovesen, Aril Bernhard; Dagenborg, Håvard; Halvorsen, Pål; Riegler, Michael Alexander; Johansen, Dag
Sammendrag
Detection of anomalies within data streams is an important task that is useful for different important societal challenges such as in traffic control and fraud detection. To be able to perform anomaly detection, unsupervised analysis of data is an important key factor, especially in domains where obtaining labelled data is difficult or where the anomalies that should be detected are often changing or are not clearly definable at all. In this article, we present a complete machine learning based pipeline for real-time unsupervised anomaly detection that can handle different input data streams simultaneously. We evaluate the usefulness of the proposed method using three wellknown datasets (fall detection, crime detection, and sport event detection) and a completely new and unlabelled dataset within the domain of commercial fishing. For all datasets, our method outperforms the baselines significantly and is able to detect relevant anomalies while simultaneously having low numbers of false positives. In addition to the good detection performance, the presented system can operate in real-time and is also very flexible and easy to expand.
Forlag
IEEE
Sitering
Nordmo, Ovesen, Dagenborg, Halvorsen, Riegler, Johansen: Fishing Trawler Event Detection: An Important Step Towards Digitization of Sustainable Fishing. In: Nichele, Aamodt, Misra, Mölder. 2023 3rd International Conference on Applied Artificial Intelligence (ICAPAI), 2023. IEEE conference proceedings
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [482]
Copyright 2023 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring