ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fishing Trawler Event Detection: An Important Step Towards Digitization of Sustainable Fishing

Permanent link
https://hdl.handle.net/10037/31676
DOI
https://doi.org/10.1109/ICAPAI58366.2023.10194202
Thumbnail
View/Open
article.pdf (19.68Mb)
Accepted manuscript version (PDF)
Date
2023-08-02
Type
Chapter
Bokkapittel

Author
Nordmo, Tor-Arne Schmidt; Ovesen, Aril Bernhard; Dagenborg, Håvard; Halvorsen, Pål; Riegler, Michael Alexander; Johansen, Dag
Abstract
Detection of anomalies within data streams is an important task that is useful for different important societal challenges such as in traffic control and fraud detection. To be able to perform anomaly detection, unsupervised analysis of data is an important key factor, especially in domains where obtaining labelled data is difficult or where the anomalies that should be detected are often changing or are not clearly definable at all. In this article, we present a complete machine learning based pipeline for real-time unsupervised anomaly detection that can handle different input data streams simultaneously. We evaluate the usefulness of the proposed method using three wellknown datasets (fall detection, crime detection, and sport event detection) and a completely new and unlabelled dataset within the domain of commercial fishing. For all datasets, our method outperforms the baselines significantly and is able to detect relevant anomalies while simultaneously having low numbers of false positives. In addition to the good detection performance, the presented system can operate in real-time and is also very flexible and easy to expand.
Publisher
IEEE
Citation
Nordmo, Ovesen, Dagenborg, Halvorsen, Riegler, Johansen: Fishing Trawler Event Detection: An Important Step Towards Digitization of Sustainable Fishing. In: Nichele, Aamodt, Misra, Mölder. 2023 3rd International Conference on Applied Artificial Intelligence (ICAPAI), 2023. IEEE conference proceedings
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (informatikk) [482]
Copyright 2023 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)