Vis enkel innførsel

dc.contributor.authorChlaily, Saloua
dc.contributor.authorRatha, Debanshu
dc.contributor.authorLozou, Pigi
dc.contributor.authorMarinoni, Andrea
dc.date.accessioned2023-12-20T13:18:50Z
dc.date.available2023-12-20T13:18:50Z
dc.date.issued2023-10-12
dc.description.abstractUncertainty is unavoidable in classification tasks and might originate from data (e.g., due to noise or wrong labeling), or the model (e.g., due to erroneous assumptions, etc). Providing an assessment of uncertainty associated with each outcome is of paramount importance in assessing the reliability of classification algorithms, especially on unseen data. In this work, we propose two measures of uncertainty in classification. One of the measures is developed from a geometrical perspective and quantifies a classifier's distance from a random guess. In contrast, the second proposed uncertainty measure is homophily-based since it takes into account the similarity between the classes. Accordingly, it reflects the type of mistaken classes. The proposed measures are not aggregated, i.e., they provide an uncertainty assessment to each data point. Moreover, they do not require label information. Using several datasets, we demonstrate the proposed measures’ differences and merit in assessing uncertainty in classification. The source code is available at github.com/pioui/uncertainty .en_US
dc.identifier.citationChlaily S, Ratha D, Lozou P, Marinoni A. On Measures of Uncertainty in Classification. IEEE Transactions on Signal Processing. 2023;71:3710-3725en_US
dc.identifier.cristinIDFRIDAID 2185434
dc.identifier.doi10.1109/TSP.2023.3322843
dc.identifier.issn1053-587X
dc.identifier.issn1941-0476
dc.identifier.urihttps://hdl.handle.net/10037/32185
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.journalIEEE Transactions on Signal Processing
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101112859/EU/Accelerating and mainstreaming transformative NATure-bAsed solutions to enhance resiLIEence to climate change for diverse bio-geographical European regions/NATALIE/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleOn Measures of Uncertainty in Classificationen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)