Vis enkel innførsel

dc.contributor.authorErlandsson, Viveka
dc.contributor.authorSouto, Juan
dc.date.accessioned2024-01-11T09:59:04Z
dc.date.available2024-01-11T09:59:04Z
dc.date.issued2023-12-15
dc.description.abstractLet Σ be a closed hyperbolic surface. We study, for fixed g, the asymptotics of the number of those periodic geodesics in Σ having at most length L and which can be written as the product of g commutators. The basic idea is to reduce these results to being able to count critical realizations of trivalent graphs in Σ. In the appendix, we use the same strategy to give a proof of Huber’s geometric prime number theorem.en_US
dc.identifier.citationErlandsson, Souto. Counting geodesics of given commutator length. Forum of Mathematics, Sigma. 2023;11en_US
dc.identifier.cristinIDFRIDAID 2223025
dc.identifier.doi10.1017/fms.2023.114
dc.identifier.issn2050-5094
dc.identifier.urihttps://hdl.handle.net/10037/32416
dc.language.isoengen_US
dc.publisherCambridge University Pressen_US
dc.relation.journalForum of Mathematics, Sigma
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleCounting geodesics of given commutator lengthen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)