dc.contributor.author | Erlandsson, Viveka | |
dc.contributor.author | Souto, Juan | |
dc.date.accessioned | 2024-01-11T09:59:04Z | |
dc.date.available | 2024-01-11T09:59:04Z | |
dc.date.issued | 2023-12-15 | |
dc.description.abstract | Let Σ be a closed hyperbolic surface. We study, for fixed g, the asymptotics of the number of those periodic
geodesics in Σ having at most length L and which can be written as the product of g commutators. The basic idea is
to reduce these results to being able to count critical realizations of trivalent graphs in Σ. In the appendix, we use
the same strategy to give a proof of Huber’s geometric prime number theorem. | en_US |
dc.identifier.citation | Erlandsson, Souto. Counting geodesics of given commutator length. Forum of Mathematics, Sigma. 2023;11 | en_US |
dc.identifier.cristinID | FRIDAID 2223025 | |
dc.identifier.doi | 10.1017/fms.2023.114 | |
dc.identifier.issn | 2050-5094 | |
dc.identifier.uri | https://hdl.handle.net/10037/32416 | |
dc.language.iso | eng | en_US |
dc.publisher | Cambridge University Press | en_US |
dc.relation.journal | Forum of Mathematics, Sigma | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2023 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.title | Counting geodesics of given commutator length | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |