Vis enkel innførsel

dc.contributor.advisorAbel, Sören
dc.contributor.authorStorflor, Merete
dc.date.accessioned2024-01-17T09:05:44Z
dc.date.available2024-01-17T09:05:44Z
dc.date.issued2024-02-09
dc.description.abstractBacteria can adapt to various environments because they efficiently sense and respond to external cues. This is exemplified by antibiotic resistance, a leading cause for death on a global scale. Antibiotics exert a selection pressure on bacteria, where improper use can inadvertently select for antibiotic resistance. Dissemination of antibiotic resistance throughout bacterial populations can occur via horizontal gene transfer. Bacteria can also take up genetic material from the environment and incorporate it into their genome. This is known as natural transformation and is dependent on bacteria entering a state of competence to take up environmental DNA. Induction of competence involves an extensive network of signaling, that involves sensing and responding to external cues such as population density, and nutrient availability. The external cues are then converted into a phenotypic response. The cell surface is critical to regulate this activity and occurs via an intricate tapestry of membrane proteins, lipids and more. The orchestration of these components is vital for appropriate signal processing and proper adaptation. This thesis explores bacterial adaptation in response to external cues such as antibiotics and environmental DNA. As well as activity and localization of membrane proteins.en_US
dc.description.abstractBakterier har en enorm evne til å tilpasse seg ulike miljøer som innebærer å tolke eksterne stressfaktorer. Et eksempel på dette er antibiotikaresistens, som er en ledende dødsårsak på global basis. Antibiotika utsetter bakterier for et seleksjonspress, ved feil bruk vil man ubevisst selektere for resistente bakterier. Resistensgener kan så overføres ved horisontal genoverføring. På den måten kan resistens fordeles i populasjonen. Bakterier kan også ta opp fremmed DNA fra miljøet og inkorporere det i sitt genom. Dette kalles naturlig transformering og krever at bakteriene blir kompetente til å kunne ta opp fremmed DNA. Dette innebærer som regel et innviklet nettverk av signalering. Eksterne faktorer som populasjonstetthet og tilgang på næring blir da konvertert til en phenotypisk respons. Celleoverflaten er kritisk for å regulere denne aktiviteten og foregår via ett tettpakket vev av blant annet membranproteiner og lipider. Dette er essensielt for å kunne registrere og videreføre informasjon fra miljøet. Denne avhandlingen utforsker tilpasningsevnen til bakterier i henhold til stressfaktorer, som antibiotika og DNA fra miljøet, og samspillet mellom aktivering av membranproteiner, som nevnt ovenfor.en_US
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractBacteria adapt to different environments by sensing and responding to external signals. This is dependent on complex signaling that converts external cues, such as population density and nutrient availability, into a response. An example of bacterial adaptation is antibiotic resistance, which is a major global health threat. Improper antibiotic use can lead to unintentional selection of resistance. the bacterial population is not uniform and some bacterial can have traits that result in resistance. Antibiotic resistance provides bacteria with an advantage and can spread within bacterial populations. This distribution of genes enables the population to rapidly adapt and survive harsh environmental changes, like exposure to antibiotics. However, this process is often random, contributing to overall genetic diversity. It may not yield immediate benefits and could even pose a disadvantage, but over time, it might prove useful or become neutral. An example of this random gene transfer is seen in ability to take up genetic material from the surrounding environment. To uptake genetic material from the environment bacteria rely on intricate signaling mechanisms. This involves responding to external cues like population density and nutrient availability. The cell surface plays a crucial role, serving not only as a protective barrier but also as a platform for the intricate regulation of membrane proteins, lipids, and other components. The process of bacterial adaptation hinges on converting external environmental signals into a coordinated response. That is why, this thesis explores bacterial adaptation in response to external cues such as antibiotics and environmental DNA. As well as activity and localization of membrane proteins.en_US
dc.description.sponsorshipUiT The Arctic University of Norway Norwegian PhD School of Pharmacy (NFIF) Graduate School in Infection Biology and Antimicrobials (IBA)en_US
dc.identifier.urihttps://hdl.handle.net/10037/32523
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.relation.haspart<p>Paper I: Storflor, M., Gama, J.A., Harms, K. & Abel, S. Transposon insertion sequencing reveals dependency of natural transformation on amino acid metabolism. (Manuscript). <p>Paper II: Clarelli, F., Palmer, A., Singh, B., Storflor, M., Lauksund, S., Cohen, T., Abel, S. & Abel zur Wiesch, P. (2020). Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones. <i>PLoS Computational Biology, 16</i>(8), e1008106. Also available in Munin at <a href=https://hdl.handle.net/10037/20372>https://hdl.handle.net/10037/20372</a>. <p>Paper III: Weikum, J., van Dyck, J., Subramani, S., Klebl, D.P., Storflor, M., Muench, S.P., Abel, S., Sobott, F. & Morth, J.P. The bacterial magnesium transporter MgtA reveals highly selective interaction with specific cardiolipin species. (Accepted manuscript). Now published in <i>Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1871</i>(1), January 2024, 119614, available at <a href=https://doi.org/10.1016/j.bbamcr.2023.119614>https://doi.org/10.1016/j.bbamcr.2023.119614</a>.en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subjectAdaptationen_US
dc.subjectNatural transformationen_US
dc.subjectVibrio choleraeen_US
dc.subjectAntibioticsen_US
dc.subjectMembrane proteinsen_US
dc.subjectDNA uptakeen_US
dc.subjectHeterogeneityen_US
dc.subjectBacteriaen_US
dc.subjectE. colien_US
dc.subjectV. choleraeen_US
dc.subjectSelectionen_US
dc.titleMicrobial Adaptation - Responses to External Cuesen_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)