Vis enkel innførsel

dc.contributor.authorMikelić, Andro
dc.contributor.authorPiatnitski, Andrei
dc.date.accessioned2024-01-17T12:59:56Z
dc.date.available2024-01-17T12:59:56Z
dc.date.issued2023-06-13
dc.description.abstractIn this paper we obtain the homogenization results for a system of partial differential equations describing the transport of a N-component electrolyte in a dilute Newtonian solvent through a rigid random disperse porous medium. We present a study of the nonlinear Poisson–Boltzmann equation in a random medium, establish convergence of the stochastic homogenization procedure and prove well-posedness of the two-scale homogenized equations. In addition, after separating scales, we prove that the effective tensor satisfies the so-called Onsager properties, that is the tensor is symmetric and positive definite. This result shows that the Onsager theory applies to random porous media. The strong convergence of the fluxes is also established. In the periodic case homogenization results for the mentioned system have been obtained in Allaire et al (2010 J. Math. Phys.51 123103).en_US
dc.identifier.citationMikelić, Piatnitski. Homogenization of the linearized ionic transport equations in random porous media. Nonlinearity. 2023;36(7):3835-3885en_US
dc.identifier.cristinIDFRIDAID 2169097
dc.identifier.doi10.1088/1361-6544/acda73
dc.identifier.issn0951-7715
dc.identifier.issn1361-6544
dc.identifier.urihttps://hdl.handle.net/10037/32532
dc.language.isoengen_US
dc.publisherIOP Publishingen_US
dc.relation.journalNonlinearity
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.titleHomogenization of the linearized ionic transport equations in random porous mediaen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel