ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Federated Partially Supervised Learning With Limited Decentralized Medical Images

Permanent lenke
https://hdl.handle.net/10037/32963
DOI
https://doi.org/10.1109/TMI.2022.3231017
Thumbnail
Åpne
article(1).pdf (903.4Kb)
Akseptert manusversjon (PDF)
Dato
2022-12-20
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Dong, Nanqing; Kampffmeyer, Michael; Voiculescu, Irina; Xing, Eric
Sammendrag
Data government has played an instrumental role in securing the privacy-critical infrastructure in the medical domain and has led to an increased need of federated learning (FL). While decentralization can limit the effectiveness of standard supervised learning, the impact of decentralization on partially supervised learning remains unclear. Besides, due to data scarcity, each client may have access to only limited partially labeled data. As a remedy, this work formulates and discusses a new learning problem federated partially supervised learning (FPSL) for limited decentralized medical images with partial labels. We study the impact of decentralized partially labeled data on deep learning-based models via an exemplar of FPSL, namely, federated partially supervised learning multi-label classification . By dissecting FedAVG, a seminal FL framework, we formulate and analyze two major challenges of FPSL and propose a simple yet robust FPSL framework, FedPSL , which addresses these challenges. In particular, FedPSL contains two modules, task-dependent model aggregation and task-agnostic decoupling learning , where the first module addresses the weight assignment and the second module improves the generalization ability of the feature extractor. We provide a comprehensive empirical understanding of FSPL under data scarcity with simulated experiments. The empirical results not only indicate that FPSL is an under-explored problem with practical value but also show that the proposed FedPSL can achieve robust performance against baseline methods on data challenges such as data scarcity and domain shifts. The findings of this study also pose a new research direction towards label-efficient learning on medical images.
Forlag
IEEE
Sitering
Dong, Kampffmeyer, Voiculescu, Xing. Federated Partially Supervised Learning With Limited Decentralized Medical Images. IEEE Transactions on Medical Imaging. 2023;42(7):1944-1954
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2023 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring