ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Image Inpainting With Hypergraphs for Resolution Improvement in Scanning Acoustic Microscopy

Permanent lenke
https://hdl.handle.net/10037/32996
DOI
https://doi.org/10.1109/CVPRW59228.2023.00313
Thumbnail
Åpne
article.pdf (7.575Mb)
Akseptert manusversjon (PDF)
Dato
2023-08-14
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Somani, Ayush; Banerjee, Pragyan; Rastogi, Manu; Habib, Anowarul; Agarwal, Krishna; Prasad, Dilip Kumar
Sammendrag
Scanning Acoustic Microscopy (SAM) uses high-frequency acoustic waves to generate non-ionizing, label-free images of the surface and internal structures of industrial objects and biological specimens. The resolution of SAM images is limited by several factors such as the frequency of excitation signals, the signal-to-noise ratio, and the pixel size. We propose to use a hypergraphs image inpainting technique for SAM that fills in missing information to improve the resolution of the SAM image. We compared the performance of our technique with four other different techniques based on generative adversarial networks (GANs), including AOTGAN, DeepFill v2, Edge-Connect and DMFN. Our results show that the hypergraphs image inpainting model provides the SOTA average SSIM of 0.82 with a PSNR of 27.96 for 4x image size enhancement over the raw SAM image. We emphasize the importance of hypergraphs' interpretability to bridge the gap between human and machine perception, particularly for robust image recovery tools for acoustic scan imaging. We show that combining SAM with hypergraphs can yield more noise-robust explanations.
Forlag
IEEE
Sitering
Somani A, Banerjee P, Rastogi, Habib A, Agarwal K, Prasad DK. Image Inpainting With Hypergraphs for Resolution Improvement in Scanning Acoustic Microscopy. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2023:3113-3122
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [481]
Copyright 2023 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring