ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • Vis innførsel
  •   Hjem
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generation of synthetic tabular healthcare data using generative adversarial networks

Permanent lenke
https://hdl.handle.net/10037/33130
DOI
https://doi.org/10.1007/978-3-031-27077-2_34
Thumbnail
Åpne
article.pdf (799.1Kb)
Akseptert manusversjon (PDF)
Dato
2023-03-29
Type
Chapter
Bokkapittel

Forfatter
Nik, Alireza Hossein Zadeh; Riegler, Michael Alexander; Halvorsen, Pål; Storås, Andrea
Sammendrag
High-quality tabular data is a crucial requirement for developing data-driven applications, especially healthcare-related ones, because most of the data nowadays collected in this context is in tabular form. However, strict data protection laws complicates the access to medical datasets. Thus, synthetic data has become an ideal alternative for data scientists and healthcare professionals to circumvent such hurdles. Although many healthcare institutions still use the classical de-identification and anonymization techniques for generating synthetic data, deep learning-based generative models such as generative adversarial networks (GANs) have shown a remarkable performance in generating tabular datasets with complex structures. This paper examines the GANs’ potential and applicability within the healthcare industry, which often faces serious challenges with insufficient training data and patient records sensitivity. We investigate several state-of-the-art GAN-based models proposed for tabular synthetic data generation. Healthcare datasets with different sizes, numbers of variables, column data types, feature distributions, and inter-variable correlations are examined. Moreover, a comprehensive evaluation framework is defined to evaluate the quality of the synthetic records and the viability of each model in preserving the patients’ privacy. The results indicate that the proposed models can generate synthetic datasets that maintain the statistical characteristics, model compatibility and privacy of the original data. Moreover, synthetic tabular healthcare datasets can be a viable option in many data-driven applications. However, there is still room for further improvements in designing a perfect architecture for generating synthetic tabular data.
Forlag
Springer
Sitering
Nik, Riegler, Halvorsen, Storås: Generation of synthetic tabular healthcare data using generative adversarial networks. In: Dang-Nguyen D. MultiMedia Modeling : 29th International conference, MMM 2023, Bergen, Norway, January 9-12, 2023, Proceedings, Part II, 2023. Springer p. 434-446
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (UB) [3251]
Copyright 2023 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring