ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model

Permanent link
https://hdl.handle.net/10037/33160
Thumbnail
View/Open
article.pdf (916.9Kb)
Published version (PDF)
Date
2022-10-15
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Gautam, Srishti; Boubekki, Ahcene; Hansen, Stine; Salahuddin, Suaiba Amina; Jenssen, Robert; Hohne, Marina Marie-Claire; Kampffmeyer, Michael
Abstract
The need for interpretable models has fostered the development of self-explainable classifiers. Prior approaches are either based on multi-stage optimization schemes, impacting the predictive performance of the model, or produce explanations that are not transparent, trustworthy or do not capture the diversity of the data. To address these shortcomings, we propose ProtoVAE, a variational autoencoder-based framework that learns class-specific prototypes in an end-to-end manner and enforces trustworthiness and diversity by regularizing the representation space and introducing an orthonormality constraint. Finally, the model is designed to be transparent by directly incorporating the prototypes into the decision process. Extensive comparisons with previous self-explainable approaches demonstrate the superiority of ProtoVAE, highlighting its ability to generate trustworthy and diverse explanations, while not degrading predictive performance.
Description
Source at https://nips.cc/.
Citation
Gautam S, Boubekki A, Hansen S, Salahuddin SA, Jenssen R, Hohne MM, Kampffmeyer MC. ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model. Advances in Neural Information Processing Systems. 2022
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2022 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)