dc.contributor.author | Gautam, Srishti | |
dc.contributor.author | Boubekki, Ahcene | |
dc.contributor.author | Hansen, Stine | |
dc.contributor.author | Salahuddin, Suaiba Amina | |
dc.contributor.author | Jenssen, Robert | |
dc.contributor.author | Hohne, Marina Marie-Claire | |
dc.contributor.author | Kampffmeyer, Michael | |
dc.date.accessioned | 2024-03-14T11:22:17Z | |
dc.date.available | 2024-03-14T11:22:17Z | |
dc.date.issued | 2022-10-15 | |
dc.description.abstract | The need for interpretable models has fostered the development of self-explainable classifiers. Prior approaches are either based on multi-stage optimization schemes, impacting the predictive performance of the model, or produce explanations that are not transparent, trustworthy or do not capture the diversity of the data. To address these shortcomings, we propose ProtoVAE, a variational autoencoder-based framework that learns class-specific prototypes in an end-to-end manner and enforces trustworthiness and diversity by regularizing the representation space and introducing an orthonormality constraint. Finally, the model is designed to be transparent by directly incorporating the prototypes into the decision process. Extensive comparisons with previous self-explainable approaches demonstrate the superiority of ProtoVAE, highlighting its ability to generate trustworthy and diverse explanations, while not degrading predictive performance. | en_US |
dc.description | Source at <a href=https://nips.cc/>https://nips.cc/</a>. | en_US |
dc.identifier.citation | Gautam S, Boubekki A, Hansen S, Salahuddin SA, Jenssen R, Hohne MM, Kampffmeyer MC. ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model. Advances in Neural Information Processing Systems. 2022 | en_US |
dc.identifier.cristinID | FRIDAID 2084871 | |
dc.identifier.issn | 1049-5258 | |
dc.identifier.uri | https://hdl.handle.net/10037/33160 | |
dc.language.iso | eng | en_US |
dc.relation.journal | Advances in Neural Information Processing Systems | |
dc.relation.projectID | Norges forskningsråd: 315029 | en_US |
dc.relation.projectID | Norges forskningsråd: 309439 | en_US |
dc.relation.projectID | Norges forskningsråd: 303514 | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2022 The Author(s) | en_US |
dc.title | ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |