Viser treff 261-280 av 453

    • Reinforcement learning application in diabetes blood glucose control: A systematic review 

      Tejedor Hernandez, Miguel Angel; Woldaregay, Ashenafi Zebene; Godtliebsen, Fred (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-02-21)
      <p>Background: Reinforcement learning (RL) is a computational approach to understanding and automating goal-directed learning and decision-making. It is designed for problems which include a learning agent interacting with its environment to achieve a goal. For example, blood glucose (BG) control in diabetes mellitus (DM), where the learning agent and its environment are the controller and the body ...
    • Consumer-Based Activity Trackers as a Tool for Physical Activity Monitoring in Epidemiological Studies During the COVID-19 Pandemic: Development and Usability Study 

      Henriksen, André; Johannessen, Erlend; Hartvigsen, Gunnar; Grimsgaard, Sameline; Hopstock, Laila Arnesdatter (Journal article; Tidsskriftartikkel; Peer reviewed, 2021-04-23)
      Background: Consumer-based physical activity trackers have increased in popularity. The widespread use of these devices and the long-term nature of the recorded data provides a valuable source of physical activity data for epidemiological research. The challenges include the large heterogeneity between activity tracker models in terms of available data types, the accuracy of recorded data, and how ...
    • Integration of solar latent heat storage towards optimal small-scale combined heat and power generation by Organic Rankine Cycle 

      Lizana, Jesus; Bordin, Chiara; Rajabloo, Talieh (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-03-16)
      Thermal energy and distributed electricity demand are continuously increased in areas poorly served by a centralized power grid. In many cases, the deployment of the electricity grid is not economically feasible. Small-scale Organic Rankine Cycle (ORC) appears as a promising technology that can be operated by solar energy, providing combined heat and power (CHP) generation. Additionally, thermal ...
    • Features extraction of wind ramp events from a virtual wind park 

      Mishra, Sambeet; Oren, Esin; Bordin, Chiara; Wen, Fushuan; Palu, Ivo (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-11-26)
      In the European renewable energy portfolio, wind has a sizeable share in the total energy production. The Nordic and Baltic energy systems in particular are benefiting from wind energy to reach the greenhouse gas emissions reduction objectives set by the EU. The wind energy production varies with time, and this intermittent characteristic imposes a challenge for full utilization of renewable energy ...
    • HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy 

      Borgli, Hanna; Thambawita, Vajira; Smedsrud, Pia H; Hicks, Steven; Jha, Debesh; Eskeland, Sigrun Losada; Randel, Kristin Ranheim; Pogorelov, Konstantin; Lux, Mathias; Dang Nguyen, Duc Tien; Johansen, Dag; Griwodz, Carsten; Stensland, Håkon Kvale; Garcia-Ceja, Enrique; Schmidt, Peter T; Hammer, Hugo Lewi; Riegler, Michael; Halvorsen, Pål; de Lange, Thomas (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-08-28)
      Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop systems for automatic analysis, like detecting disease or other lesions. In this respect, this article ...
    • Neural network based country wise risk prediction of COVID-19 

      Pal, Ratnabali; Sekh, Arif Ahmed; Kar, Samarjit; Prasad, Dilip K. (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-09-16)
      The recent worldwide outbreak of the novel coronavirus (COVID-19) has opened up new challenges to the research community. Artificial intelligence (AI) driven methods can be useful to predict the parameters, risks, and effects of such an epidemic. Such predictions can be helpful to control and prevent the spread of such diseases. The main challenges of applying AI is the small volume of data and the ...
    • Metastatic Breast Cancer and Pre-Diagnostic Blood Gene Expression Profiles—The Norwegian Women and Cancer (NOWAC) Post-Genome Cohort 

      Holsbø, Einar; Olsen, Karina Standahl (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-10-15)
      Breast cancer patients with metastatic disease have a higher incidence of deaths from breast cancer than patients with early-stage cancers. Recent findings suggest that there are differences in immune cell function between metastatic and non-metastatic cases, even years before diagnosis. We have analyzed whole blood gene expression by Illumina bead chips in blood samples taken using the PAXgene blood ...
    • Predicting breast cancer metastasis from whole-blood transcriptomic measurements 

      Holsbø, Einar; Perduca, Vittorio; Bongo, Lars Ailo; Lund, Eiliv; Birmelé, Etienne (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-05-20)
      <i>Objective</i> - In this exploratory work we investigate whether blood gene expression measurements predict breast cancer metastasis. Early detection of increased metastatic risk could potentially be life-saving. Our data comes from the Norwegian Women and Cancer epidemiological cohort study. The women who contributed to these data provided a blood sample up to a year before receiving a breast ...
    • Smart Energy and power systems modelling: an IoT and Cyber-Physical Systems perspective, in the context of Energy Informatics 

      Bordin, Chiara; Håkansson, Anne; Mishra, Sambeet (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-10-02)
      This paper aims at identifying the key role of ”Smart Energy and Power Systems Modelling”, within the context of Energy Informatics. The main objective is to describe how the specific subject of ”Smart Energy and Power Systems Modelling” can give a key contribution within the novel domain of Energy Informatics, by successfully linking and integrating the different disciplines involved. First the ...
    • Neural Network Based Country Wise Risk Prediction of COVID-19 

      Pal, Ratnabali; Sekh, Arif Ahmed; Kar, Samarjit; Prasad, Dilip K. (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-09-16)
      The recent worldwide outbreak of the novel coronavirus (COVID-19) has opened up new challenges to the research community. Artificial intelligence (AI) driven methods can be useful to predict the parameters, risks, and effects of such an epidemic. Such predictions can be helpful to control and prevent the spread of such diseases. The main challenges of applying AI is the small volume of data and the ...
    • How mHealth can facilitate collaboration in diabetes care: qualitative analysis of codesign workshops 

      Bradway, Meghan; Morris, Rebecca L.; Giordanengo, Alain; Årsand, Eirik (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-11-30)
      <i>Background</i> - Individuals with diabetes are using mobile health (mHealth) to track their self-management. However, individuals can understand even more about their diabetes by sharing these patient-gathered data (PGD) with health professionals. We conducted experience-based co-design (EBCD) workshops, with the aim of gathering end-users’ needs and expectations for a PGD-sharing system.<p> ...
    • Machine Learning for Hydropower Scheduling: State of the Art and Future Research Directions 

      Bordin, Chiara; Skjelbred, Hans Ivar; Kong, Jiehong; Yang, Zhirong (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-10-02)
      This paper investigates and discusses the current and future role of machine learning (ML) within the hydropower sector. An overview of the main applications of ML in the field of hydropower operations is presented to show the most common topics that have been addressed in the scientific literature in the last years. The objective is to provide recommendations for novel research directions that can ...
    • A low-cost set CRDT based on causal lengths 

      Yu, Weihai; Rostad, Sigbjørn (Chapter; Bokkapittel, 2020-04)
      CRDTs, or Conflict-free Replicated Data Types, are data abstractions that guarantee convergence for replicated data. Set is one of the most fundamental and widely used data types. Existing general-purpose set CRDTs associate every element in the set with causal contexts as meta data. Manipulation of causal contexts can be complicated and costly. We present a new set CRDT, CLSet (causal-length set), ...
    • Power models, energy models and libraries for energy-efficient concurrent data structures and algorithms 

      Ha, Hoai Phuong; Tran, Vi Ngoc-Nha; Umar, Ibrahim; Atalar, Aras; Gidenstam, Anders; Renaud-Goud, Paul; Tsigas, Philippas; Walulya, Ivan (Research report; Forskningsrapport, 2016)
      This deliverable reports the results of the power models, energy models and librariesfor energy-efficient concurrent data structures and algorithms as available by projectmonth 30 of Work Package 2 (WP2). It reports i) the latest results of Task 2.2-2.4 onproviding programming abstractions and libraries for developing energy-efficient datastructures and algorithms and ii) the improved results of ...
    • White-box methodologies, programming abstractions and libraries 

      Ha, Hoai Phuong; Tran, Ngoc Nha Vi; Umar, Ibrahim; Atalar, Aras; Gidenstam, Anders; Renaud-Goud, Paul; Tsigas, Philippas (Research report; Forskningsrapport, 2015)
      This deliverable reports the results of white-box methodologies and early results ofthe first prototype of libraries and programming abstractions as available by projectmonth 18 by Work Package 2 (WP2). It reports i) the latest results of Task 2.2on white-box methodologies, programming abstractions and libraries for developingenergy-efficient data structures and algorithms ...
    • Report on the final prototype of programming abstractions for energy-efficient inter-process communication 

      Ha, Hoai Phuong; Tran, Vi Ngoc-Nha; Umar, Ibrahim; Atalar, Aras; Gidenstam, Anders; Renaud-Goud, Paul; Tsigas, Philippas; Walulya, Ivan (Research report; Forskningsrapport, 2016)
      Work package 2 (WP2) aims to develop libraries for energy-efficient inter-processcommunication and data sharing on the EXCESS platforms. The Deliverable D2.4reports on the final prototype of programming abstractions for energy-efficient inter-process communication. Section 1 is the updated overview of the prototype of pro-gramming abstraction and devised power/energy models. The Section 2-6 contain ...
    • Models for energy consumption of data structures and algorithms 

      Ha, Hoai Phuong; Tran, Ngoc Nha Vi; Umar, Ibrahim; Tsigas, Philippas; Gidenstam, Anders; Renaud-Goud, Paul; Walulya, Ivan; Atalar, Aras (Research report; Forskningsrapport, 2014)
      This deliverable reports our early energy models for data structures and algorithms based on both micro-benchmarks and concurrent algorithms. It reports the early results of Task 2.1 on investigating and modeling the trade-off between energy and performance in concurrent data structures and algorithms, which forms the basis for the whole work package 2 (WP2). The work has been ...
    • The NOOP experimental Python programming environment 

      Andersen, Anders (Journal article; Tidsskriftartikkel, 2014)
      Python is a dynamic language well suited to build a run-time providing adaptive support to distributed applications. Python has dynamic typing where variables are given a type when they are assigned a value. To introduce type safety, interfaces, and a component model in Python NOOP introduces a type language and a way to apply typing to functions (and methods). This type system is described in the ...
    • Toward Detecting Infection Incidence in People With Type 1 Diabetes Using Self-Recorded Data (Part 1): A Novel Framework for a Personalized Digital Infectious Disease Detection System 

      Woldaregay, Ashenafi Zebene; Launonen, Ilkka Kalervo; Årsand, Eirik; Albers, David; Holubova, Anna; Hartvigsen, Gunnar (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-08-12)
      <i>Background</i>: Type 1 diabetes is a chronic condition of blood glucose metabolic disorder caused by a lack of insulin secretion from pancreas cells. In people with type 1 diabetes, hyperglycemia often occurs upon infection incidences. Despite the fact that patients increasingly gather data about themselves, there are no solid findings that uncover the effect of infection incidences on key ...
    • A Novel Approach for Continuous Health Status Monitoring and Automatic Detection of Infection Incidences in People With Type 1 Diabetes Using Machine Learning Algorithms (Part 2): A Personalized Digital Infectious Disease Detection Mechanism 

      Woldaregay, Ashenafi Zebene; Launonen, Ilkka Kalervo; Albers, David; Igual, Jorge; Årsand, Eirik; Hartvigsen, Gunnar (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-08-12)
      <i>Background</i>: Semisupervised and unsupervised anomaly detection methods have been widely used in various applications to detect anomalous objects from a given data set. Specifically, these methods are popular in the medical domain because of their suitability for applications where there is a lack of a sufficient data set for the other classes. Infection incidence often brings prolonged ...