Vis enkel innførsel

dc.contributor.authorMunthe-Kaas, Hans Zanna
dc.date.accessioned2025-02-11T12:02:10Z
dc.date.available2025-02-11T12:02:10Z
dc.date.issued2024-01
dc.description.abstractWe consider geometric numerical integration algorithms for differential equations evolving on symmetric spaces. The integrators are constructed from canonical operations on the symmetric space, its Lie triple system (LTS), and the exponential from the LTS to the symmetric space. Examples of symmetric spaces are n-spheres and Grassmann manifolds, the space of positive definite symmetric matrices, Lie groups with a symmetric product, and elliptic and hyperbolic spaces with constant sectional curvatures. We illustrate the abstract algorithm with concrete examples. In particular for the n-sphere and the n-dimensional hyperbolic space the resulting algorithms are very simple and cost only O(n) operations per step.en_US
dc.description“This article has been published in a revised form in Journal of Computational Dynamics [https://www.aimsciences.org//article/doi/10.3934/jcd.2023015]. This version is free to download for private research and study only. Not for redistribution, re-sale or use in derivative works.”en_US
dc.identifier.citationMunthe-Kaas. GEOMETRIC INTEGRATION ON SYMMETRIC SPACES. Journal of Computational Dynamics. 2024;11(1):43-58en_US
dc.identifier.cristinIDFRIDAID 2268449
dc.identifier.doi10.3934/jcd.2023015
dc.identifier.issn2158-2505
dc.identifier.urihttps://hdl.handle.net/10037/36467
dc.language.isoengen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.relation.journalJournal of Computational Dynamics
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.titleGEOMETRIC INTEGRATION ON SYMMETRIC SPACESen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel