ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Operationalizing AI/ML in Future Networks: A Bird's Eye View from the System Perspective

Permanent lenke
https://hdl.handle.net/10037/36701
DOI
https://doi.org/10.1109/MCOM.001.2400033
Thumbnail
Åpne
article.pdf (673.1Kb)
Akseptert manusversjon (PDF)
Dato
2024-09-09
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Liu, Qiong; Zhang, Tianzhu; Hemmatpour, Masoud; Zhang, Dong; Qiu, Han; Shue Chen, Chung; Mellia, Marco; Aghasaryan, Armen
Sammendrag
Modern artificial intelligence (AI) technologies, led by machine learning (ML), have gained unprecedented momentum over the past decade. Following this wave of "AI summer," the network research community has also embraced AI/ML algorithms to address many problems related to network operations and management. However, compared to their counterparts in other domains, most ML-based solutions have yet to receive largescale deployment due to insufficient maturity for production settings. This article concentrates on the practical issues of developing and operating ML-based solutions in real networks. Specifically, we enumerate the key factors hindering the integration of AI/ML in real networks, and review existing solutions to uncover the missing components. Further, we highlight a promising direction, that is, machine learning operations (MLOps), that can close the gap. We believe this article spotlights the system-related considerations on implementing and maintaining ML-based solutions, and invigorates their full adoption in future networks.
Forlag
IEEE
Sitering
Liu, Zhang, Hemmatpour, Zhang, Qiu, Shue Chen, Mellia, Aghasaryan. Operationalizing AI/ML in Future Networks: A Bird's Eye View from the System Perspective. IEEE Communications Magazine. 2024
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [481]
Copyright 2024 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring