ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • Vis innførsel
  •   Hjem
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

MaxCutPool: differentiable feature-aware Maxcut for pooling in graph neural networks

Permanent lenke
https://hdl.handle.net/10037/36720
Thumbnail
Åpne
article.pdf (1.400Mb)
Innsendt manusversjon (PDF)
Dato
2025
Type
Journal article
Tidsskriftartikkel

Forfatter
Abate, Carlo; Bianchi, Filippo Maria
Sammendrag
We propose a novel approach to compute the MAXCUT in attributed graphs, i.e., graphs with features associated with nodes and edges. Our approach works well on any kind of graph topology and can find solutions that jointly optimize the MAXCUT along with other objectives. Based on the obtained MAXCUT partition, we implement a hierarchical graph pooling layer for Graph Neural Networks, which is sparse, trainable end-to-end, and particularly suitable for downstream tasks on heterophilic graphs.
Beskrivelse
Submitted to the International Conference on Learning Representations (ICLR), april 2025.
Sitering
Abate, Bianchi. MaxCutPool: differentiable feature-aware Maxcut for pooling in graph neural networks. International Conference on Learning Representations. 2025
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (UB) [3244]
Copyright 2025 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring