ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

GUNet++: guided-U-Net-based compact image representation with an improved reconstruction mechanism

Permanent lenke
https://hdl.handle.net/10037/36750
DOI
https://doi.org/10.1364/JOSAA.525577
Thumbnail
Åpne
article.pdf (1.189Mb)
Akseptert manusversjon (PDF)
Dato
2024-09-26
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Banerjee, Nirwan; Malakar, Samir; Horsch, Ludwig Alexander; Prasad, Dilip Kumar
Sammendrag
The invention of microscopy- and nanoscopy-based imaging technology opened up different research directions in life science. However, these technologies create the need for larger storage space, which has negative impacts on the environment. This scenario creates the need for storing such images in a memory-efficient way. Compact image representation (CIR) can solve the issue as it targets storing images in a memory-efficient way. Thus, in this work, we have designed a deep-learning-based CIR technique that selects key pixels using the guided U-Net (GU-Net) architecture [Asian Conference on Pattern Recognition, p. 317 (2023)], and then near-original images are constructed using a conditional generative adversarial network (GAN)-based architecture. The technique was evaluated on two microscopy- and two scanner-captured-image datasets and obtained good performance in terms of storage requirements and quality of the reconstructed images.
Forlag
Optica Publishing Group
Sitering
Banerjee, Malakar, Horsch, Prasad. GUNet++: guided-U-Net-based compact image representation with an improved reconstruction mechanism. Optical Society of America. Journal A: Optics, Image Science, and Vision (JOSA A). 2024;41(10):1979-1986
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [478]
Copyright 2024 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring