Vis enkel innførsel

dc.contributor.authorBanerjee, Nirwan
dc.contributor.authorMalakar, Samir
dc.contributor.authorHorsch, Ludwig Alexander
dc.contributor.authorPrasad, Dilip Kumar
dc.date.accessioned2025-03-21T10:14:44Z
dc.date.available2025-03-21T10:14:44Z
dc.date.issued2024-09-26
dc.description.abstractThe invention of microscopy- and nanoscopy-based imaging technology opened up different research directions in life science. However, these technologies create the need for larger storage space, which has negative impacts on the environment. This scenario creates the need for storing such images in a memory-efficient way. Compact image representation (CIR) can solve the issue as it targets storing images in a memory-efficient way. Thus, in this work, we have designed a deep-learning-based CIR technique that selects key pixels using the guided U-Net (GU-Net) architecture [Asian Conference on Pattern Recognition, p. 317 (2023)], and then near-original images are constructed using a conditional generative adversarial network (GAN)-based architecture. The technique was evaluated on two microscopy- and two scanner-captured-image datasets and obtained good performance in terms of storage requirements and quality of the reconstructed images.en_US
dc.identifier.citationBanerjee, Malakar, Horsch, Prasad. GUNet++: guided-U-Net-based compact image representation with an improved reconstruction mechanism. Optical Society of America. Journal A: Optics, Image Science, and Vision (JOSA A). 2024;41(10):1979-1986en_US
dc.identifier.cristinIDFRIDAID 2313763
dc.identifier.doi10.1364/JOSAA.525577
dc.identifier.issn1084-7529
dc.identifier.issn1520-8532
dc.identifier.urihttps://hdl.handle.net/10037/36750
dc.language.isoengen_US
dc.publisherOptica Publishing Groupen_US
dc.relation.journalOptical Society of America. Journal A: Optics, Image Science, and Vision (JOSA A)
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.titleGUNet++: guided-U-Net-based compact image representation with an improved reconstruction mechanismen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel