Vis enkel innførsel

dc.contributor.authorJenssen, Robert
dc.date.accessioned2025-03-26T12:16:39Z
dc.date.available2025-03-26T12:16:39Z
dc.date.issued2024-01-16
dc.description.abstractMAP IT visualizes representations by taking a fundamentally different approach to dimensionality reduction. MAP IT aligns distributions over discrete marginal probabilities in the input space versus the target space, thus capturing information in wider local regions, as opposed to current methods which align based on pairwise probabilities between states only. The MAP IT theory reveals that alignment based on a projective divergence avoids normalization of weights (to obtain true probabilities) entirely, and further reveals a dual viewpoint via continuous densities and kernel smoothing. MAP IT is shown to produce visualizations which capture class structure better than the current state of the art.en_US
dc.identifier.citationJenssen. MAP IT to Visualize Representations. International Conference on Learning Representations. 2024en_US
dc.identifier.cristinIDFRIDAID 2300017
dc.identifier.urihttps://hdl.handle.net/10037/36771
dc.language.isoengen_US
dc.publisherICLR (International Conference on Learning Representation)en_US
dc.relation.journalInternational Conference on Learning Representations
dc.relation.projectIDNorges forskningsråd: 303514en_US
dc.relation.projectIDNorges forskningsråd: 309439en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleMAP IT to Visualize Representationsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)