Vis enkel innførsel

dc.contributor.authorWolff, Miriam Kopperstad
dc.contributor.authorSteinert, Martin
dc.contributor.authorFougner, Anders Lyngvi
dc.contributor.authorOh, Doyoung
dc.contributor.authorÅrsand, Eirik
dc.contributor.authorVolden, Rune
dc.date.accessioned2025-04-24T12:21:02Z
dc.date.available2025-04-24T12:21:02Z
dc.date.issued2024-09-13
dc.description.abstractThis study evaluates machine learning (ML) algorithms for predicting blood glucose (BG) levels, essential in real-time robotic diabetes control systems that integrate insulin pumps, continuous glucose monitors, and potentially additional sensors. Our objective is to use real-time deployment insights to guide future algorithm design. While existing research presents algorithms with strong performance metrics, these often rely on repetitive datasets, limiting real-world applicability. We compared a Ridge Regressor and a Long-Short-Term Memory deep neural network, focusing on their real-time deployment and evaluation. Initially, we validated our algorithms against a benchmark dataset to ensure consistency with published studies by calculating the root mean square error (RMSE). We then assessed the same models using data from a study participant within a smartphone application, evaluating real-time predictions through a user questionnaire. Our findings revealed a discrepancy between the performance metrics and real-world evaluation, suggesting these metrics might neglect complex transformations within hidden layers and fail to reflect critical situations. This study underscores the need for future research to refine evaluation methods that consider model behavior in critical scenarios and to develop models rooted in domain-specific knowledge, incorporating physiological constraints like insulin effects, to ensure alignment with physical reality.en_US
dc.identifier.citationWolff MK, Steinert MS, Fougner A L, Oh, Årsand E, Volden R: Real-Time Blood Glucose Prediction Reveals a Discrepancy Between Performance Metrics and Real-World Evaluations. In: Zhang H, Shi Q. Proceedings of the 2024 IEEE International Conference on Real-time Computing and Robotics (RCAR), 2024. IEEE conference proceedings p. 570-575en_US
dc.identifier.cristinIDFRIDAID 2297653
dc.identifier.doi10.1109/RCAR61438.2024.10671342
dc.identifier.isbn979-8-3503-7260-1
dc.identifier.urihttps://hdl.handle.net/10037/36939
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/10671342/
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.subject.hrcsStoffskifte og hormoner: Medisinsk utstyr
dc.subject.hrcsMetabolic and Endocrine : Medical devices
dc.subjectVDP::Teknologi: 500::Medisinsk teknologi: 620en_US
dc.subjectVDP::Technology: 500::Medical technology: 620en_US
dc.subjectKontinuerlig glukosemåling / Continuous glucose measurementen_US
dc.subjectKunstig bukspyttkjertel / Artificial Pancreasen_US
dc.subjectPrediksjon av glukosenivå / Glucose level predictionen_US
dc.subjectType 1 diabetes / Type 1 diabetesen_US
dc.titleReal-Time Blood Glucose Prediction Reveals a Discrepancy Between Performance Metrics and Real-World Evaluationsen_US
dc.type.versionacceptedVersionen_US
dc.typeChapteren_US
dc.typeBokkapittelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel