Vis enkel innførsel

dc.contributor.advisorObuobi, Sybil Akua Okyerewa
dc.contributor.authorAntunes de Sousa, Alexandra Sofia
dc.date.accessioned2025-04-30T09:31:59Z
dc.date.available2025-04-30T09:31:59Z
dc.date.embargoEndDate2027-05-16
dc.date.issued2025-05-16
dc.description.abstractThe organization of microorganisms in biofilms presents an obstacle in antimicrobial therapy and a great burden to health care systems worldwide. The complex structural dynamics of biofilms, in which pathogens form dense cell clusters and produce a sticky matrix that surrounds them, creates a great challenge for biofilm eradication. Additionally, the ease of biofilm formation in diverse medical devices and human tissues (e.g. the skin) urgently calls for urgent alternative therapies. To address this, multiple nanoparticles have been used as drug delivery systems, in which compounds are encapsulated into nanocarriers to increase their antimicrobial activity. While various nanoparticles have been fabricated for this purpose using different materials, the use of DNA has been severely underexplored. Nucleic acid-based materials have demonstrated great potential in diverse biomedical fields, but few studies have been done to understand their specific interactions with biofilms. In this work, we initially focused on developing three different DNA-based nanoparticles, namely a tetrahedron DNA assembly (TDN), a micellar DNA structure (ssDNA micelles), and a chitosan-coated tetrahedron (TDN-Chit) with different physicochemical properties and evaluated their penetration and diffusion ability into <i>Pseudomonas aeruginosa</i> biofilms. We showed that all three assemblies penetrate the biofilms, albeit to different extents: the TDN and ssDNA micelles had lower penetration, but increased diffusion compared to the TDN-Chit. In addition, we showed how it is possible to load antimicrobial peptides in the micelles and lipid-coated TDN, resulting in strong biofilm penetration, inhibition, and eradication. Lastly, we demonstrated the cytocompatibility of the drug-loaded DNA-based nanocarriers in two skin cell lines. Overall, we showed how it is possible to advance drug delivery systems using oligonucleotides for antibiofilm therapy in topical applications.en_US
dc.description.abstractOrganisering av mikroorganismer i biofilmer utgjør en hindring for antimikrobiell terapi og en stor byrde for helsevesenet verden over. De komplekse strukturelle dynamikkene i biofilmer, der patogener danner tette celleklynger og produserer en klebrig matriks som omgir dem, skaper en stor utfordring knyttet til utrydding av biofilmer. I tillegg fører hyppig dannelsen av biofilmer på ulikt medisinsk utstyr og i menneskelig vev (f.eks. huden) til et akutt behov for alternative terapier. For å imøtekomme behovet har flere nanopartikler blitt utprøvd som legemiddelleveringssystemer, der forbindelser innkapsles i nanobærere for å øke den antimikrobielle aktiviteten. Selv om ulike nanopartikler basert på forskjellige materialer har blitt fremstilt for dette formålet, har forskningen på DNA som bærematerial vært sterkt underrepresentert. Nukleinsyrebaserte materialer har vist stort potensial i ulike biomedisinske felt, men få studier har blitt gjort for å forstå deres spesifikke interaksjoner med biofilmer. I dette arbeidet fokuserte vi i utgangspunktet på å utvikle tre forskjellige DNA-baserte nanopartikler, nemlig en tetraedrisk DNA-struktur (TDN), en micellær DNA-struktur (ssDNA-miceller) og en kitosan-belagt tetraeder (TDN-Chit) med forskjellige fysiokjemiske egenskaper og evaluerte deres penetrerings- og diffusjonsevne i biofilmer dannet av <i>Pseudomonas aeruginosa</i>. Vi viste at alle tre strukturene penetrerte biofilmene, men i ulik grad: TDN og ssDNA-miceller hadde lavere penetreringsevne, men økt diffusjon sammenlignet med TDN-Chit. I tillegg viste vi hvordan det er mulig å inkorporere antimikrobielle peptider i miceller og lipidbelagt TDN, som resulterte i sterk biofilmpenetrering, -hemming og -utryddelse. Til slutt demonstrerte vi cytokompatibiliteten til de legemiddelholdige DNA-baserte nanobærerne i to hudcellelinjer. Samlet sett viste vi hvordan det er mulig å videreutvikle legemiddelleveringssystemer for antibiofilmterapi i topikale applikasjoner ved bruk av oligonukleotider.en_US
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractMany microorganisms have the ability to form biofilms, in which they pack themselves together and produce a sticky matrix that protects them from the exterior environment. Biofilms frequently form in skin wounds and become very difficult to treat because drugs have a poor penetration into the biofilms. As a treatment strategy, antimicrobial compounds have been incorporated in nanoparticles that shield the drug from the environment and penetrate the biofilms to kill the bacteria. In this work, we study the possibility of making DNA nanoparticles as drug delivery systems against biofilms. We began by making nanoparticles without drugs and characterized their biofilm penetration and diffusion capacity. Afterwards, we added antimicrobial compounds to the particles and tested their ability to inhibit and eradicate biofilms and evaluated their potential to be applied skin-related biofilm infections.en_US
dc.description.sponsorshipCANS Centre for New Antibacterial Strategies (TFS grant no. 18_CANS_AS) Tromsø Forsknings-Stiftelse (TFS) starting grant (20_SG_SO)en_US
dc.identifier.isbn978-82-350-0021-7
dc.identifier.urihttps://hdl.handle.net/10037/36974
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.relation.haspart<p>Paper I: Sousa, A., Kulkarni, R., Johannessen, M., Wohland, T., Škalko-Basnet, N. & Obuobi, S. (2025). Decoding interactions between biofilms and DNA nanoparticles. <i>Biofilm, 9</i>, 100260. Also available at <a href=https://doi.org/10.1016/j.bioflm.2025.100260>https://doi.org/10.1016/j.bioflm.2025.100260</a>. <p>Paper II: Sousa, A., Borøy, V., Bæverud, A., Julin, K., Bayer, A., Strøm, M., Johannessen, M., Škalko-Basnet, N. & Obuobi, S. (2023). Polymyxin B stabilized DNA micelles for sustained antibacterial and antibiofilm activity against <i>P. aeruginosa. Journal of Materials Chemistry B, 11</i>(33), 7972–7985. Also available in Munin at <a href=https://hdl.handle.net/10037/32180>https://hdl.handle.net/10037/32180</a>. <p>Paper III: Sousa, A., Škalko-Basnet, N., & Obuobi, S. Loading of a lipid-coated DNA tetrahedron with an antimicrobial peptide as drug delivery system for antibiofilm therapy in <i>P. aeruginosa</i>. (Manuscript).en_US
dc.rights.accessRightsembargoedAccessen_US
dc.rights.holderCopyright 2025 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.subjectbiofilmsen_US
dc.subjectnanoparticlesen_US
dc.subjectDNAen_US
dc.titleNucleic acids against biofilms: DNA nanoparticles as drug delivery systems for biofilm penetration, inhibition and eradicationen_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)