Vis enkel innførsel

dc.contributor.authorMachot, Fadi Al
dc.contributor.authorHorsch, Martin Thomas
dc.contributor.authorUllah, Habib
dc.date.accessioned2025-05-22T08:43:33Z
dc.date.available2025-05-22T08:43:33Z
dc.date.issued2025-05-16
dc.description.abstractThis paper presents a hybrid methodology that enhances the training process of deep learning (DL) models by embedding domain expert knowledge using ontologies and answer set programming (ASP). By integrating these symbolic AI methods, we encode domain-specific constraints, rules, and logical reasoning directly into the model’s learning process, thereby improving both performance and trustworthiness. The proposed approach is flexible and applicable to both regression and classification tasks, demonstrating generalizability across various fields such as healthcare, autonomous systems, engineering, and battery manufacturing applications. Unlike other state-of-the-art methods, the strength of our approach lies in its scalability across different domains. The design allows for the automation of the loss function by simply updating the ASP rules, making the system highly scalable and user-friendly. This facilitates seamless adaptation to new domains without significant redesign, offering a practical solution for integrating expert knowledge into DL models in industrial settings such as battery manufacturing.en_US
dc.identifier.citationMachot, Horsch, Ullah: Symbolic-AI-fusion deep learning (SAIF-DL): Encoding knowledge into training with answer set programming loss penalties by a novel loss function approach. In: Machot, Horsch, Scholze. Designing the Conceptual Landscape for a XAIR Validation Infrastructure: Proceedings of the International Workshop on Designing the Conceptual Landscape for a XAIR Validation Infrastructure, DCLXVI 2024, Kaiserslautern, Germany, 2025. Springer Nature p. 35-45en_US
dc.identifier.cristinIDFRIDAID 2380315
dc.identifier.doihttps://doi.org/10.1007/978-3-031-89274-5_4
dc.identifier.isbn9783031892738
dc.identifier.issn2367-3370
dc.identifier.issn2367-3389
dc.identifier.urihttps://hdl.handle.net/10037/37116
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.projectIDEU – Horisont Europa (EC/HEU): 101138510 (DigiPass CSA)en_US
dc.relation.projectIDEU – Horisont Europa (EC/HEU): 101137725 (BatCAT)en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/HORIZON/101137725/Norway/Battery Cell Assembly Twin/BatCAT/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/HORIZON/101138510/Germany/Harmonization of Advanced Materials Ecosystems serving strategic Innovation Markets to pave the way to a Digital Materials & Product Passport/DigiPass/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2025 The Author(s)en_US
dc.titleSymbolic-AI-fusion deep learning (SAIF-DL): Encoding knowledge into training with answer set programming loss penalties by a novel loss function approachen_US
dc.type.versionacceptedVersionen_US
dc.typeChapteren_US
dc.typeBokkapittelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel