Show simple item record

dc.contributor.advisorHansen, Jørn
dc.contributor.authorGuttormsen, Yngve
dc.date.accessioned2025-08-14T13:31:48Z
dc.date.available2025-08-14T13:31:48Z
dc.date.issued2025-09-05
dc.description.abstractKinases are a central class of proteins in biological signaling. In many cancers, kinase activity is altered due to mutations, overexpression, or misregulation. This makes kinases highly attractive targets for pharmaceutical and diagnostic development. This thesis explores these two approaches to kinase targeting: (A) the development of small molecule inhibitors for kinases and other oncological targets, and (B) the development of radioactively labeled kinase inhibitors for diagnostic imaging of glioblastoma (GBM) using positron emission tomography (PET). In Project A, the natural product Phorbazole B was synthesized alongside a series of analogs related to the phorbazoles and the structurally related breitfussins. The compounds were evaluated against various kinases, and a selection was tested against histone deacetylases (HDACs) – another enzyme class implicated in cancers. One analog demonstrated selective inhibition against HDACs 9 and 11, two sparsely explored isoforms of the HDACs. The synthesis strategies employed enabled flexible modification of the phorbazole scaffold. In Project B, kinase inhibitors from the scientific literature and patents were used as starting points for radiotracer development for GBM imaging. Two compounds targeting Epidermal Growth Factor Receptor (EGFR) and Cyclin-dependent Kinase 7 (CDK7) were synthesized, labeled with carbon-11, and evaluated in preclinical models. Both tracers demonstrated blood-brain barrier penetration and some tumor uptake. Their in vivo performance was limited by metabolic instability and uncertain binding specificity.en_US
dc.description.abstractKinaser er en stor gruppe proteiner som spiller en sentral rolle i biologisk signalisering. I mange kreftformer er kinasenes aktivitetsnivå endret som følge av mutasjoner, økt antall kinaser, eller feilregulering. Dette gjør kinaser veldig attraktive mål for farmasøytisk og radiofarmasøytisk utvikling. Denne avhandlingen har to tilnærminger til dette: (A) utvikling av småmolekylære kinasehemmere for kreftbehandling, og (B) utvikling av radioaktive kinasehemmere for diagnostikk av glioblastom (GBM) ved bruk av PET skanning. I prosjekt A ble naturproduktet phorbazol B syntetisert, samt en serie relaterte molekyler. Disse ble testet for hemming av ulike kinaser, og et utvalg ble testet mot såkalte histon-deacetylaser (HDACs) – en annen proteinklasse som ofte er involvert i kreft. En av inhibitorene viste aktivitet mot HDAC 9 og 11, to lite studerte former av HDAC. Syntesestrategiene som ble benyttet muliggjorde fleksibel modifisering av phorbazolstrukturene. I prosjekt B ble to kinasehemmere fra vitenskaplig litteratur og patenter benyttet som radioaktive sporingsmolekyler for diagnostikk av GBM ved PET skanning. To molekyler med målretting mot epidermal vekstfaktor-reseptor (EGFR) og cyclin-avhengig kinase 7 (CDK7) ble syntetisert, merket med radioaktivt karbon-11, og evaluert i dyremodeller. Begge sporingsmolekylene ble tatt opp i hjernen og i svulster. Deres anvendelighet begrensed imidlertid av metabolsk nedbrytning i dyremodellene og usikkerheter knyttet til målrettet tumorsporing.en_US
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractCancer remains one of the leading causes of death, and better tools to detect and treat it are urgently needed. In this project, I developed small molecules to stop cancer-related enzymes called kinases and others that carry radioactive labels to scan for brain tumors with high levels of kinases. Here, I describe the design, synthesis, and radioactive labeling of molecules for diagnosis and treatment. The molecules were tested in different models, from single cancer-related proteins and cells to animal models with cancer. This work may lead to improved cancer treatment and more accurate imaging – especially for aggressive brain tumors.en_US
dc.identifier.isbn978-82-350-0037-8
dc.identifier.urihttps://hdl.handle.net/10037/37980
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.relation.haspart<p>Paper I: Guttormsen, Y., Fairhurst, M., Pandey, S.K., Isaksson, J., Haug, B.E. & Bayer, A. (2020). Total Synthesis of Phorbazole B. <i>Molecules, 25</i>(20), 4848. Also available in Munin at <a href=https://hdl.handle.net/10037/19691>https://hdl.handle.net/10037/19691</a>. <p>Paper II: Reierth, I.A.N., Guttormsen, Y., Andersen, J.H., Hansen, E.H., Abdelhady, A.M., Langer, M.K., … Petit, G.A. Investigation of the HDAC inhibitor potential of phorbazole analogs. (Submitted manuscript). <p>Paper III: Guttormsen, Y., Lindemann, M., Otezia, A., Sundset, R., Moldes-Anaya, A. & Kranz, M. Development and preclinical evaluation of an EGFR targeting 11C-labelled radiotracer for PET imaging of glioblastoma. (Manuscript).en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2025 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.subjectKinaseen_US
dc.subjectRadiopharmaceuticalen_US
dc.subjectInhibitoren_US
dc.subjectDrug developmenten_US
dc.titleTargeting Kinases for (Radio) Pharmaceutical Developmenten_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)