Environmental change in the Early Permian of NE Svalbard : from a warm-water carbonate platform (Gipshuken Formation) to a temperate, mixed siliciclastic-carbonate ramp (Kapp Starostin Formation)
Permanent lenke
https://hdl.handle.net/10037/4053DOI
doi: 10.1007/s10347-010-0243-zDato
2011Type
Journal articleTidsskriftartikkel
Peer reviewed
Sammendrag
A detailed facies study of Early Permian strata within NE Svalbard reveals a fundamental change of the depositional setting, from a restricted-marine, warm-water carbonate platform to an open-marine, temperate-water, mixed siliciclastic-carbonate ramp. The uppermost strata of the Gipshuken Formation (Templet and Sørfonna members; Sakmarian–early Artinskian?) consist of microbialites (algal mats), mudstones, bioclastic/peloidal limestones, carbonate breccias and Microcodium facies reflecting peritidal platform areas and supratidal sabkhas. A mixed heterozoan/reduced photozoan assemblage indicates temperate-water conditions within neighboring deeper, open-marine mid-platform areas, while warm-water conditions still prevailed within inner platform zones. In contrast, the lowermost strata of the overlying Kapp Starostin Formation (Vøringen Member; late Artinskian?–Kungurian) show a fully heterozoan biotic assemblage reflecting temperate water conditions within open-marine, storm-dominated, nearshore to transitional offshore areas of a mixed carbonate-siliciclastic ramp. The Vøringen Member comprises three facies associations, which form a shallowing-upward sequence subsequent to an initial transgression. The sediments reflect bryozoan bioherms in most distal areas, followed by stacked tempestites of sandy brachiopodal shell banks and Skolithos piperocks, grading into broad sand flats in most proximal areas of the inner ramp. The above environmental change is regarded as a regional event taken place across the entire shelf along the northern margin of Pangea and is attributed to paleoclimatic, paleoceanographic, as well as paleogeographic changes, possibly related to the overall northwards drift of the supercontinent. An abrupt increase in terrigenous input coinciding with this change is ascribed to the uplift of a new local source area, probably to the north or east of the investigation area.
Forlag
SpringerSitering
Facies 57(2011) nr. 3 s. 493-523Metadata
Vis full innførselSamlinger
Følgende lisensfil er knyttet til denne innførselen: