• Machine learning derived input-function in a dynamic 18F-FDG PET study of mice 

      Kuttner, Samuel; Wickstrøm, Kristoffer Knutsen; Kalda, Gustav; Dorraji, Seyed Esmaeil; Martin-Armas, Montserrat; Oteiza, Ana; Jenssen, Robert; Fenton, Kristin Andreassen; Sundset, Rune; Axelsson, Jan (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-01-13)
      Tracer kinetic modelling, based on dynamic <sup>18</sup>F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is used to quantify glucose metabolism in humans and animals. Knowledge of the arterial input-function (AIF) is required for such measurements. Our aim was to explore two non-invasive machine learning-based models, for AIF prediction in a small-animal dynamic FDG PET study. 7 tissue ...