ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

Permanent link
https://hdl.handle.net/10037/8902
DOI
https://doi.org/10.1007/s10533-015-0082-7
Thumbnail
View/Open
article.pdf (826.8Kb)
Accepted manuscript version (PDF)
Date
2015-02-24
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Semenchuk, Philipp; Elberling, Bo; Amtorp, Cecilie; Winkler, Judith; Rumpf, Sabine Bettina; Michelsen, Anders; Cooper, Elisabeth J.
Abstract
Nitrogen (N) mineralization, nutrient availability, and plant growth in the Arctic are often restricted by low temperatures. Predicted increases of cold-season temperatures may be important for plant nutrient availability and growth, given that N mineralization is also taking place during the cold season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic Svalbard in two vegetation types spanning three moisture regimes. We measured growing-season availability of ammonium (NH4 +), nitrate (NO3 −), total dissolved organic carbon (DOC) and nitrogen (TON) in soil; C, N, δ15N and chlorophyll content in Salix polaris leaves; and leaf sizes of Salix, Bistorta vivipara, and Luzula arcuata at peak season. Nutrient availability was significantly higher with increased snow depth in the two mesic meadow vegetation types, but not in the drier heath vegetation. Nitrogen concentrations and δ15N values of Salix leaves were significantly higher in all vegetation types, but the leaf sizes were unchanged. Leaves of Bistorta and Luzula were significantly larger but only significantly so in one moist vegetation type. Increased N and chlorophyll concentrations in leaves indicate a potential for increased growth (C uptake), supported by large leaf sizes for some species. Responses to cold-season soil warming are vegetation type- and species-specific, with potentially stronger responses in moister vegetation types. This study therefore highlights the contrasting effect of snow in a tundra landscape and has important implications for projections of whole tundra responses to climate change.
Description
Accepted manuscript version. The final publication is available at Springer via href=http://dx.doi.org/10.1007/s10533-015-0082-7
Publisher
Springer Verlag
Citation
Biogeochemistry 2015, 124(1-3):81-94
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (arktisk og marin biologi) [1636]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)