ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating Visual Saliency Algorithms: Past, Present and Future

Permanent lenke
https://hdl.handle.net/10037/8991
DOI
https://doi.org/10.2352/J.ImagingSci.Technol.2015.59.5.050501
Thumbnail
Åpne
201603Sharma_evaluating_visual_JIST0006_muninreg.pdf (9.166Mb)
Hovedartikkel (PDF)
201603sharma_brev_utgiver.doc (74.5Kb)
(Microsoft Word)
Dato
2015-09-01
Type
Tidsskriftartikkel
Peer reviewed
Journal article
Forfatter
Sharma, Puneet
Sammendrag
With the introduction of compressed sensing (CS) theory, investigation into exploiting sparseness and optimizing compressive sensing performance has ensued. Compressed sensing is highly applicable to images, which naturally have sparse representations. Improvements in the area of image denoising have resulted from the combination of highly-directional transforms with shrinkage and thresholding techniques along with imposition of a model to account for statistical properties of images. Using this approach, statistical modeling of dependencies in the transform domain is incorporated into high-performance and efficient state-of-the-art CS image reconstruction algorithms with highly-directional transforms incorporating redundancy and bivariate shrinkage and thresholding to further refine image reconstruction performance improvements. Additionally, hierarchical structural dependency modeling is incorporated to account for parent‐child coefficient relationships. These techniques exploit hierarchical structure and multiscale subbands of frequencies and orientation, exploiting dependencies across and within scales. Additionally, these techniques are incorporated with minimal additional CPU execution time into block-based CS (BCS) algorithms, which are known for their efficient and fast computation time. Experimental results show increased refinements of image reconstruction performance over current state-of-the-art image reconstruction algorithms, particularly at the higher CS ratios (lower sampling rates) of interest in compressed sensing.
Beskrivelse
-
Forlag
Society for Imaging Science and Technology
Sitering
Journal of Imaging Science and Technology 2015, 59(5):1-17
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (teknologi og sikkerhet) [360]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring