Vis enkel innførsel

dc.contributor.authorAssi, Nada
dc.contributor.authorMoskal, Aurelie
dc.contributor.authorSlimani, Nadia
dc.contributor.authorViallon, Vivian
dc.contributor.authorChajes, Veronique
dc.contributor.authorFreisling, Heinz
dc.contributor.authorMonni, Stefano
dc.contributor.authorKnueppel, Sven
dc.contributor.authorFörster, Jana
dc.contributor.authorWeiderpass, Elisabete
dc.contributor.authorLujan-Barroso, Leila
dc.contributor.authorAmiano, Pilar
dc.contributor.authorArdanaz, Eva
dc.contributor.authorMolina-Montes, Esther
dc.contributor.authorSalmeron, Diego
dc.contributor.authorQuiros, Jose Ramon
dc.contributor.authorOlsen, Anja
dc.contributor.authorTjonneland, Anne
dc.contributor.authorDahm, Christina C
dc.contributor.authorOvervad, Kim
dc.contributor.authorDossus, Laure
dc.contributor.authorFournier, Agnes
dc.contributor.authorBaglietto, Laura
dc.contributor.authorFortner, Renee Turzanski
dc.contributor.authorKaaks, Rudolf
dc.contributor.authorTrichopoulou, Antonia
dc.contributor.authorBamia, Christina
dc.contributor.authorOrfanos, Philippos
dc.contributor.authorde Magistris, Maria Santucci
dc.contributor.authorMasala, Giovanna
dc.contributor.authorAgnoli, Claudia
dc.contributor.authorRicceri, Fulvio
dc.contributor.authorTumino, Rosario
dc.contributor.authorBueno De Mesquita, H Bas
dc.contributor.authorBakker, Marije F
dc.contributor.authorPeeters, Petra HM
dc.contributor.authorSkeie, Guri
dc.contributor.authorBraaten, Tonje
dc.contributor.authorWinkvist, Anna
dc.contributor.authorJohansson, Ingegerd
dc.contributor.authorKhaw, Kay-Tee
dc.contributor.authorWareham, Nicholas J
dc.contributor.authorKey, Tim
dc.contributor.authorTravis, Ruth
dc.contributor.authorSchmidt, Julie A
dc.contributor.authorMerritt, Melissa A
dc.contributor.authorRiboli, Elio
dc.contributor.authorRomieu, Isabelle
dc.contributor.authorFerrari, Pietro
dc.date.accessioned2017-03-07T14:02:11Z
dc.date.available2017-03-07T14:02:11Z
dc.date.issued2015-02-23
dc.description.abstractObjective: Pattern analysis has emerged as a tool to depict the role of multiple nutrients/foods in relation to health outcomes. The present study aimed at extracting nutrient patterns with respect to breast cancer (BC) aetiology.<br> Design: Nutrient patterns were derived with treelet transform (TT) and related to BC risk. TT was applied to twenty-three log-transformed nutrient densities from dietary questionnaires. Hazard ratios (HR) and 95 % confidence intervals computed using Cox proportional hazards models quantified the association between quintiles of nutrient pattern scores and risk of overall BC, and by hormonal receptor and menopausal status. Principal component analysis was applied for comparison.<br> Setting: The European Prospective Investigation into Cancer and Nutrition (EPIC).<br> Subjects: Women (n 334 850) from the EPIC study.<br> Results: The first TT component (TC1) highlighted a pattern rich in nutrients found in animal foods loading on cholesterol, protein, retinol, vitamins B12 and D, while the second TT component (TC2) reflected a diet rich in β-carotene, riboflavin, thiamin, vitamins C and B6, fibre, Fe, Ca, K, Mg, P and folate. While TC1 was not associated with BC risk, TC2 was inversely associated with BC risk overall (HRQ5 v. Q1=0·89, 95 % CI 0·83, 0·95, Ptrend<0·01) and showed a significantly lower risk in oestrogen receptor-positive (HRQ5 v. Q1=0·89, 95 % CI 0·81, 0·98, Ptrend=0·02) and progesterone receptor-positive tumours (HRQ5 v. Q1=0·87, 95 % CI 0·77, 0·98, Ptrend<0·01). <br> Conclusions: TT produces readily interpretable sparse components explaining similar amounts of variation as principal component analysis. Our results suggest that participants with a nutrient pattern high in micronutrients found in vegetables, fruits and cereals had a lower risk of BC.en_US
dc.descriptionPublished version. Source at <a href=https://doi.org/10.1017/S1368980015000294> https://doi.org/10.1017/S1368980015000294 </a>en_US
dc.identifier.citationAssi, N. et.al.: A treelet transform analysis to relate nutrient patterns to the risk of hormonal receptor-defined breast cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutrition. 2016;19(2):242-254en_US
dc.identifier.cristinIDFRIDAID 1366394
dc.identifier.doi10.1017/S1368980015000294
dc.identifier.issn1368-9800
dc.identifier.issn1475-2727
dc.identifier.urihttps://hdl.handle.net/10037/10467
dc.language.isoengen_US
dc.publisherCambridge University Pressen_US
dc.relation.journalPublic Health Nutrition
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Medisinske Fag: 700::Helsefag: 800::Ernæring: 811en_US
dc.subjectVDP::Medical disciplines: 700::Health sciences: 800::Nutrition: 811en_US
dc.subjectNutrient patternsen_US
dc.subjectTreelet transformen_US
dc.subjectBreast canceren_US
dc.subjectEuropean Prospective Investigation into Cancer and Nutritionen_US
dc.subjectPrincipal component analysisen_US
dc.titleA treelet transform analysis to relate nutrient patterns to the risk of hormonal receptor-defined breast cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC)en_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel