ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Paleo-methane emissions recorded in foraminifera near the landward limit of the gas hydrate stability zone offshore western Svalbard

Permanent link
https://hdl.handle.net/10037/10843
DOI
https://doi.org/10.1002/2015GC006153
Thumbnail
View/Open
article.pdf (2.419Mb)
Main article (PDF)
Date
2016-02-26
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Panieri, Giuliana; Graves, Carolyn; James, Rachel
Abstract
We present stable isotope and geochemical data from four sediment cores from west of Prins Karls Forland (ca. 340 m water depth), offshore western Svalbard, recovered from close to sites of active methane seepage, as well as from shallower water depths where methane seepage is not presently observed. Our analyses provide insight into the record of methane seepage in an area where ongoing ocean warming may be fueling the destabilization of shallow methane hydrate. The d13C values of benthic and planktonic foraminifera at the methane seep sites show distinct intervals with negative values (as low as 227.8&) that do not coincide with the present-day depth of the sulfate methane transition zone (SMTZ) These intervals are interpreted to record long-term fluctuations in methane release at the present-day land- ward limit of the gas hydrate stability zone (GHSZ). Shifts in the radiocarbon ages obtained from planktonic foraminifera toward older values are related to methane-derived authigenic carbonate overgrowths of the foraminiferal tests, and prevent us from establishing the chronology of seepage events. At shallower water depths, where seepage is not presently observed, no record of past methane seepage is recorded in forami nifera from sediments spanning the last 14 ka cal BP (14C-AMS dating). d13C values of foraminiferal carbon- ate tests appear to be much more sensitive to methane seepage than other sediment parameters. By providing nucleation sites for authigenic carbonate precipitation, foraminifera thus record the position of even a transiently stable SMTZ, which is likely to be a characteristic of temporally variable methane fluxes.
Description
Published version. Source at http://dx.doi.org/10.1002/2015GC006153
Publisher
American Geophysical Union
Citation
Panieri G, Graves C, James R. Paleo-methane emissions recorded in foraminifera near the landward limit of the gas hydrate stability zone offshore western Svalbard . Geochemistry Geophysics Geosystems. 2016;17(2):521-537
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (geovitenskap) [809]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)