Show simple item record

dc.contributor.authorBettum, Ingrid Johanne
dc.contributor.authorGorad, Saurabh Sayajirao
dc.contributor.authorBarkovskaya, Anna
dc.contributor.authorPettersen, Solveig
dc.contributor.authorMoestue, Siver Andreas
dc.contributor.authorVasiliauskaite, Kotryna
dc.contributor.authorTenstad, Ellen
dc.contributor.authorØyjord, Tove Ragnhild
dc.contributor.authorRisa, Øystein
dc.contributor.authorNygaard, Vigdis
dc.contributor.authorMælandsmo, Gunhild
dc.contributor.authorPrasmickaite, Lina
dc.date.accessioned2018-03-26T11:12:35Z
dc.date.available2018-03-26T11:12:35Z
dc.date.issued2015
dc.description.abstractInvasiveness is a hallmark of aggressive cancer like malignant melanoma, and factors involved in acquisition or maintenance of an invasive phenotype are attractive targets for therapy. We investigated melanoma phenotype modulation induced by the metastasis-promoting microenvironmental protein S100A4, focusing on the relationship between enhanced cellular motility, dedifferentiation and metabolic changes. In poorly motile, well-differentiated Melmet 5 cells, S100A4 stimulated migration, invasion and simultaneously down-regulated differentiation genes and modulated expression of metabolism genes. Metabolic studies confirmed suppressed mitochondrial respiration and activated glycolytic flux in the S100A4 stimulated cells, indicating a metabolic switch toward aerobic glycolysis, known as the Warburg effect. Reversal of the glycolytic switch by dichloracetate induced apoptosis and reduced cell growth, particularly in the S100A4 stimulated cells. This implies that cells with stimulated invasiveness get survival benefit from the glycolytic switch and, therefore, become more vulnerable to glycolysis inhibition. In conclusion, our data indicate that transition to the invasive phenotype in melanoma involves dedifferentiation and metabolic reprogramming from mitochondrial oxidation to glycolysis, which facilitates survival of the invasive cancer cells. Therapeutic strategies targeting the metabolic reprogramming may therefore be effective against the invasive phenotype.en_US
dc.descriptionPublished version available in <a href=http://dx.doi.org/10.1016/j.canlet.2015.06.006> Cancer Letters. 2015;366(1):71-83. </a>en_US
dc.identifier.citationBettum, I. J., Gorad, S. S., Barkovskaya, A., Pettersen, S., Moestue, S. A., Vasiliauskaite, K. ... Prasmickaite, L. (2015). Metabolic reprogramming supports the invasive phenotype in malignant melanoma. Cancer Letters. 366(1):71-83en_US
dc.identifier.cristinIDFRIDAID 1248696
dc.identifier.doi10.1016/j.canlet.2015.06.006
dc.identifier.issn0304-3835
dc.identifier.issn1872-7980
dc.identifier.urihttps://hdl.handle.net/10037/12443
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalCancer Letters
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/FRIMEDBIO/239940/NORWAY/Cancer metabolism: From basic biochemistry to clinical opportunities//en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Onkologi: 762en_US
dc.subjectVDP::Medical disciplines: 700::Clinical medical disciplines: 750::Oncology: 762en_US
dc.subjectMelanomaen_US
dc.subjectPhenotype switchen_US
dc.subjectWarburg effecten_US
dc.subjectS100A4en_US
dc.titleMetabolic reprogramming supports the invasive phenotype in malignant melanomaen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record