Assessment of outcome measures for cost–utility analysis in depression: mapping depression scales onto the EQ-5D-5L
Permanent lenke
https://hdl.handle.net/10037/13180Dato
2018-06-13Type
Journal articleTidsskriftartikkel
Peer reviewed
Sammendrag
Aims: We aim to develop mapping algorithms from two widely used depression scales; the Depression Anxiety Stress Scales (DASS-21) and the Kessler Psychological Distress Scale (K-10), onto the most widely used health state utility instrument, the EQ-5D-5L, using eight country-specific value sets.
Method: A total of 917 respondents with self-reported depression were recruited to describe their health on the DASS-21 and the K-10 as well as the new five-level version of the EQ-5D, referred to as the EQ-5D-5L. Six regression models were used: ordinary least squares regression, generalised linear models, beta binomial regression, fractional logistic regression model, MM-estimation and censored least absolute deviation. Root mean square error, mean absolute error and r2 were used as model performance criteria to select the optimal mapping function for each country-specific value set.
Results: Fractional logistic regression model was generally preferred in predicting EQ-5D-5L utilities from both DASS-21 and K-10. The only exception was the Japanese value set, where the beta binomial regression performed best.
Conclusions: Mapping algorithms can adequately predict EQ-5D-5L utilities from scores on DASS-21 and K-10. This enables disease-specific data from clinical trials to be applied for estimating outcomes in terms of quality-adjusted life years for use in economic evaluations.