ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Norges fiskerihøgskole
  • Artikler, rapporter og annet (Norges fiskerihøgskole)
  • Vis innførsel
  •   Hjem
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Norges fiskerihøgskole
  • Artikler, rapporter og annet (Norges fiskerihøgskole)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genetic fingerprinting of salmon louse (Lepeophtheirus salmonis) populations in the North-East Atlantic using a random forest classication approach

Permanent lenke
https://hdl.handle.net/10037/13647
DOI
https://doi.org/10.1038/s41598-018-19323-z
Thumbnail
Åpne
article.pdf (1.356Mb)
Publisher's version (PDF)
Dato
2018-01-19
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Jacobs, Arne; De Noia, M; Præbel, Kim; Kanstad-Hanssen, Øyvind; Paterno, M; Jackson, D; McGinnity, P; Sturm, Armin; Elmer, K. R.; Llewellyn, Martin
Sammendrag
Caligid sea lice represent a significant threat to salmonid aquaculture worldwide. Population genetic analyses have consistently shown minimal population genetic structure in North Atlantic Lepeophtheirus salmonis, frustrating efforts to track louse populations and improve targeted control measures. The aim of this study was to test the power of reduced representation library sequencing (IIb-RAD sequencing) coupled with random forest machine learning algorithms to define markers for fine-scale discrimination of louse populations. We identified 1286 robustly supported SNPs among four L. salmonis populations from Ireland, Scotland and Northern Norway. Only weak global structure was observed based on the full SNP dataset. The application of a random forest machine-learning algorithm identified 98 discriminatory SNPs that dramatically improved population assignment, increased global genetic structure and resulted in significant genetic population differentiation. A large proportion of SNPs found to be under directional selection were also identified to be highly discriminatory. Our data suggest that it is possible to discriminate between nearby L. salmonis populations given suitable marker selection approaches, and that such differences might have an adaptive basis. We discuss these data in light of sea lice adaption to anthropogenic and environmental pressures as well as novel approaches to track and predict sea louse dispersal.
Beskrivelse
Source at https://doi.org/10.1038/s41598-018-19323-z.
Forlag
Nature Publishing Group
Sitering
Jacobs, A., De Noia, M., Præbel, K., Kanstad-Hanssen, Ø., Paterno, M., Jackson, D., ... Llewellyn, M.S. (2018). Genetic fingerprinting of salmon louse (Lepeophtheirus salmonis) populations in the North-East Atlantic using a random forest classication approach. Scientific Reports, 8(1203). https://doi.org/10.1038/s41598-018-19323-z
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (Norges fiskerihøgskole) [1053]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring