Vis enkel innførsel

dc.contributor.authorTaman, Hagar
dc.contributor.authorFenton, Christopher Graham
dc.contributor.authorHensel, Inga Viktoria
dc.contributor.authorAnderssen, Endre
dc.contributor.authorFlorholmen, Jon
dc.contributor.authorPaulssen, Ruth H
dc.date.accessioned2018-10-23T10:41:52Z
dc.date.available2018-10-23T10:41:52Z
dc.date.issued2018-08-22
dc.description.abstract<p><i>Background and Aims</i>: The aim of this study was to investigate the genome-wide DNA methylation status in treatment-naïve ulcerative colitis [UC], and to explore the relationship between DNA methylation patterns and gene expression levels in tissue biopsies from a well-stratified treatment-naïve UC patient group.</p> <p><i>Methods</i>; Mucosal biopsies from treatment-naïve patients [n = 10], and a healthy control group [n = 11] underwent genome-wide DNA bisulfite sequencing. Principal component analysis [PCA] and diverse statistical methods were applied to obtain a dataset of differentially methylated genes. DNA methylation annotation was investigated using the UCSC Genome Browser. Gene set enrichments were obtained using the Kyoto Encyclopaedia of Genes and Genomes [KEGG] and PANTHER.</p> <p><i>Results</i>: Of all significantly differentially expressed genes [DEGs], 25% correlated with DNA methylation patterns; 30% of these genes were methylated at CpG sites near their transcription start site [TSS]. Hyper-methylation was observed for genes involved in homeostasis and defence, whereas hypo-methylation was observed for genes playing a role in immune response [i.e. chemokines and interleukins]. Of the differentially DNA methylated genes, 25 were identified as inflammatory bowel disease [IBD] susceptibility genes. Four genes [DEFFA6, REG1B, BTNL3, OLFM4] showed DNA methylation in the absence of known CpG islands.</p> <p><i>Conclusions</i>: Genome-wide DNA methylation analysis revealed distinctive functional patterns for hyper-and hypo-methylation in treatment-naïve UC. These distinct patterns could be of importance in the development and pathogenesis of UC. Further investigation of DNA methylation patterns may be useful in the development of the targeting of epigenetic processes, and may allow new treatment and target strategies for UC patients.en_US
dc.description.sponsorshipNorthern Norway Regional Health Authorityen_US
dc.identifier.citationTaman, H., Fenton, C.G., Hensel, I.V., Anderssen, E., Florholmen, J. & Paulssen, R.H. (2018). Genome-Wide DNA Methylation in Treatment-Naïve Ulcerative Colitis. Journal of Crohn's and Colitis. https://doi.org/10.1093/ecco-jcc/jjy117en_US
dc.identifier.cristinIDFRIDAID 1619968
dc.identifier.doi10.1093/ecco-jcc/jjy117
dc.identifier.issn1197-4982
dc.identifier.urihttps://hdl.handle.net/10037/14020
dc.language.isoengen_US
dc.publisherOxford University Press (OUP)en_US
dc.relation.ispartofTaman, H. (2022). Epigenetics in Inflammatory Bowel Disease. Contribution of DNA methylation to Ulcerative Colitis pathogenesis. (Doctoral thesis). <a href=https://hdl.handle.net/10037/24490>https://hdl.handle.net/10037/24490</a>.
dc.relation.journalJournal of Crohn's and Colitis
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Medical disciplines: 700::Basic medical, dental and veterinary science disciplines: 710::Medical genetics: 714en_US
dc.subjectVDP::Medisinske Fag: 700::Basale medisinske, odontologiske og veterinærmedisinske fag: 710::Medisinsk genetikk: 714en_US
dc.subjectGenome-wide DNA methylationen_US
dc.subjectulcerative colitis [UC]en_US
dc.titleGenome-Wide DNA Methylation in Treatment-Naïve Ulcerative Colitisen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel