ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsupervised Mixture-Eliminating Estimation of Equivalent Number of Looks for PolSAR Data

Permanent link
https://hdl.handle.net/10037/14161
DOI
https://doi.org/10.1109/TGRS.2017.2734064
Thumbnail
View/Open
article.pdf (2.305Mb)
Accepted manuscript version (PDF)
Date
2017-08-22
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Hu, Dingsheng; Anfinsen, Stian Normann; Qiu, X; Doulgeris, Anthony Paul; Lei, Bin
Abstract
This paper addresses the impact of mixtures between classes on equivalent number of looks (ENL) estimation. We propose an unsupervised ENL estimator for polarimetric synthetic aperture radar (PolSAR) data, which is based on small sample estimates but incorporates a mixture-eliminating (ME) procedure to automatically assess the uniformity of the estimation windows. A statistical feature derived from a combination of linear and logarithmic moments is investigated and adopted in the procedure, as it has different mean values for samples from uniform and nonuniform windows. We introduce an approach to extract the approximated sampling distribution of this test statistic for uniform windows. Then the detection is conducted by a hypothesis test with adaptive thresholds determined by a nonuniformity ratio. Finally the experiments are performed on both simulated and real SAR data. The capability of the unsupervised ME procedure is verified with simulated data. In the real data experiments, the ENL estimates of Flevoland and San Francisco PolSAR images are analyzed, which show the robustness of the proposed ENL estimation for SAR scenes with different complexities.
Description
Accepted manuscript version. Published version available at https://doi.org/10.1109/TGRS.2017.2734064.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Hu, D., Anfinsen, S.N., Qiu, X., Doulgeris, A.P. & Lei, B. (2017). Unsupervised Mixture-Eliminating Estimation of Equivalent Number of Looks for PolSAR Data. IEEE Transactions on Geoscience and Remote Sensing, 55(12), 6767-6779. https://doi.org/10.1109/TGRS.2017.2734064
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)