ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost

Permanent link
https://hdl.handle.net/10037/15528
DOI
https://doi.org/10.1002/2015JF003467
Thumbnail
View/Open
article.pdf (1.208Mb)
Publisher's version (PDF)
Date
2015-07-16
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Serov, Pavel; Portnov, Aleksei D; Mienert, Jurgen; Semenov, Peter; Ilatovskaya, Polonia
Abstract
The Holocene marine transgression starting at ~19 ka flooded the Arctic shelves driving extensive thawing of terrestrial permafrost. It thereby promoted methanogenesis within sediments, the dissociation of gas hydrates, and the release of formerly trapped gas, with the accumulation in pressure of released methane eventually triggering blowouts through weakened zones in the overlying and thinned permafrost. Here we present a range of geophysical and chemical scenarios for the formation of pingo‐like formations (PLFs) leading to potential blowouts. Specifically, we report on methane anomalies from the South Kara Sea shelf focusing on two PLFs imaged from high‐resolution seismic records. A variety of geochemical methods are applied to study concentrations and types of gas, its character, and genesis. PLF 1 demonstrates ubiquitously low‐methane concentrations (14.2–55.3 ppm) that are likely due to partly unfrozen sediments with an ice‐saturated internal core reaching close to the seafloor. In contrast, PLF 2 reveals anomalously high‐methane concentrations of >120,000 ppm where frozen sediments are completely absent. The methane in all recovered samples is of microbial and not of thermogenic origin from deep hydrocarbon sources. However, the relatively low organic matter content (0.52–1.69%) of seafloor sediments restricts extensive in situ methane production. As a consequence, we hypothesize that the high‐methane concentrations at PLF 2 are due to microbial methane production and migration from a deeper source.
Description
Source at https://doi.org/10.1002/2015JF003467.
Is part of
Serov, P. (2019). Cryosphere-controlled methane release throughout the last glacial cycle. (Doctoral thesis). https://hdl.handle.net/10037/15559.
Related research data
All data used in this paper as well as detailed description of geochemical and geophysical methods are available upon request from the authors.
Publisher
American Geophysical Union
Citation
Serov, P., Portnov, A., Mienert, J., Semenov, P. & Ilatovskaya, P. (2015). Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost. Journal of Geophysical Research - Earth Surface, 120(8), 1515-1529. https://doi.org/10.1002/2015JF003467
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (geovitenskap) [808]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)