ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effect of pole length on physiological and perceptual responses during G3 roller ski skating on uphill terrain

Permanent link
https://hdl.handle.net/10037/16235
DOI
https://doi.org/10.1371/journal.pone.0211550
Thumbnail
View/Open
article.pdf (686.7Kb)
Publisher's version (PDF)
Date
2019-02-22
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Torvik, Per Øyvind; Heimburg, Erna Dianne von; Sende, Torkel; Welde, Boye
Abstract
The benefits of using longer than self-selected poles have been shown in double poling, but these potential benefits have not been examined in the gear 3 ski skating sub-technique (G3), during which the poling movement is very similar to double poling. The aim of this study was to examine the effect of longer than self-selected poles on physiological and perceptual responses in the G3 sub-technique. Ten cross-country skiers and biathletes (VO2max 72.4 ± 3.0 ml∙min-1∙kg-1, age 20.1 ± 2.8 years, height 1.81 ± 0.03 m and weight 73.1 ± 4.6 kg) completed two tests, each with three different submaximal intensities, during roller skiing using the G3 technique. The first test was carried out at a fixed speed (10 km∙h-1) and the skiers performed two intervals of 5 min at 7, 9 and 11% inclination on a roller ski treadmill with self-selected poles (SSP) and 7.5 cm longer poles (LP) at each step. The second test had a fixed inclination of 4% and speeds of 14, 17 and 20 km∙h-1, also performed with SSP and LP at each step. At fixed speed, the oxygen uptake was 2.7% lower (P = 0.005) and the gross efficiency (GE) 2.1% higher (P = 0.01) with LP than with SSP at the steepest inclination of 11%. At fixed inclination, the oxygen uptake was 2.1% lower (P = 0.01) and the GE was 4.1% higher (P = 0.03) with LP than with SSP at the highest speed of 20 km∙h-1. At 14 km∙h-1, the oxygen uptake was 3.0% lower (P = 0.05) and GE was 3.8% higher (P = 0.03) with LP than with SSP. Our novel findings show that longer poles in the G3 technique may enhance the efficiency of skiing.
Description
Source at https://doi.org/10.1371/journal.pone.0211550.
Publisher
PLOS
Citation
Torvik, P.Ø., von Heimburg, E.D., Sende, T. & Welde, B. (2019). The effect of pole length on physiological and perceptual responses during G3 roller ski skating on uphill terrain. PLoS ONE, 14(2), e0211550. https://doi.org/10.1371/journal.pone.0211550
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (UB) [3259]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)