ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse signal recovery in MIMO specular meteor radars with waveform diversity

Permanent link
https://hdl.handle.net/10037/16318
Thumbnail
View/Open
article.pdf (4.112Mb)
Submitted manuscript version (PDF)
Date
2019-08-15
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Urco, Miguel; Chau, Jorge Luis; Weber, Tobias; Vierinen, Juha; Volz, Ryan
Abstract
Since the 1950s, specular meteor radars (SMRs) have been used to study the mesosphere and lower thermosphere (MLT) dynamics. Atmospheric parameters derived from SMRs are highly dependent on the number of detected meteors and the accuracy of the meteors' locations. Recently, incoherent and coherent multiple-input-multiple-output (MIMO) radar approaches combined with waveform diversity have been proposed to increase the number of detected meteors and to improve time, altitude, and horizontal resolution of the estimated wind fields. The incoherent MIMO approach refers to the addition of new transmit sites (widely separated), whereas the coherent MIMO refers to the addition of new transmit antennas in the same site (closely separated). In both the cases, a different pseudorandom sequence is transmitted from each antenna element. Unfortunately, the addition of new transmit antennas with different code sequences degrades the performance of conventional signal recovery algorithms. This is a consequence of the cross-interference between the transmitted waveforms, making it worse as the number of transmitters increases. In this article, we propose a signal recovery approach based on compressed sensing, taking advantage of the sparse nature of specular meteor echoes. The approach allows the exact recovery of weak echoes even in interference environments. Besides the advantage of the proposed approach to recover the meteor signal, we discuss the optimal selection of the transmitted waveforms and the minimum code length required for exact recovery. Additionally, we propose a modification of the orthogonal matching pursuit algorithm used in sparse problems to make it applicable in real-time analysis of large data. The success of the proposed approach is corroborated using Monte Carlo simulations and real data from a multi-static spread spectrum meteor radar network installed in northern Germany.
Description
Source at https://doi.org/10.1109/TGRS.2019.2931375.
Publisher
IEEE
Citation
Urco, J.M., Chau, J.L., Weber, T., Vierinen, J.P. & Volz, R. (2019). Sparse signal recovery in MIMO specular meteor radars with waveform diversity. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2019.2931375
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)